首页 > 产品 > 问答 > 什么是量子芯片,CTI是什么

什么是量子芯片,CTI是什么

来源:整理 时间:2023-06-07 07:11:46 编辑:智能门户 手机版

1,CTI是什么

CTI技术是从传统的计算机电话集成(Computer Telephony Integration)技术发展而来的,最初是想将计算机技术应用到电话系统中,能够自动地对电话中的信令信息进行识别处理,并通过建立有关的话路连接,而向用户传送预定的录音文件、转接来话等。而到现在,CTI技术已经发展成“计算机电信集成”技术(Computer Telecommunication Integration),即其中的“T”已经发展成“Telecommunication”,这意味着目前的CTI技术不仅要处理传统的电话语音,而且要处理包括传真、电子邮件等其它形式的信息媒体。CTI技术跨越计算机技术和电信技术两大领域,目前提供的一些典型业务主要有基于用户设备(CPE)的消息系统、交互语音应答、呼叫中心系统、增值业务、IP电话等。

CTI是什么

2,量子叠加是什么意思

在我们的经典物理学当中,一只猫,它可以处于死和活这么两个状态,可以代表一个信息的传输单元0或者1,就是加载一个比特的经典信息。但是到了量子世界的时候,在微观世界里面的一只猫,它不仅可以处于0或者1的状态,甚至可以处于死和活这个状态的相干叠加。对这样一种态,我们就把它叫做量子比特。那在物理的实现上是非常简单的。一个光子在真空当中传播的时候,它可以沿着水平方向偏振,竖直方向偏振。这两个状态就代表0或者1。当它沿着45度方向偏振的时候,其实就是所谓的量子叠加态|0>+|1>。爱因斯坦对这个问题做了比较深入的思考,他说,对一只猫可以处于死和活状态的叠加,那么两只猫是不是可以处于活活和死死状态的叠加呢?这就相当于两个骰子纠缠在一起,哪怕他们相距非常遥远,一个在合肥的科大,一个在深圳腾讯的总部。我们在扔这个骰子的时候,单边的结果是完全随机的,但是两边的结果在当时实验当中的是一模一样的。 ——摘自2020年腾讯科学WE大会演讲附:演讲全文https://mp.weixin.qq.com/s/7cgu_UcxJxIduSNv6aAUvg

量子叠加是什么意思

3,量子是什么东西有什么性质有多大呢

量子是一个物理概念,没有大小之分。其基本概念为所有的有形物质是“可量子化的”。“量子化”指其物理量的数值是特定的,而不是任意值。例如,在(休息状态的)原子中,电子的能量是可量子化的。这决定原子的稳定和一般问题。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。扩展资料量子态隐形传输是基于量子纠缠态的分发与量子联合测量, 实现量子态(量子信息) 的空间转移而又不移动量子态的物理载体, 这如同将密封信件内容从一个信封内转移到另一个信封内而又不移动任何信息载体自身,这在经典通信中是无法想象的事。基于量子态隐形传输技术和量子存储技术的量子中继器可以实现任意远距离的量子密钥分发及网络。参考资料:搜狗百科-量子
量子的基本观念量子代表了人类认识微观世界的核心观念,它不仅是微观实物粒子存在的基本形式,而且描述了波与场所具有的粒子性特征。以量子力学为中心的现代量子理论,完整地描述了微观世界的量子行为。事至今天,虽然关于量子力学的基础及其解释还没有定论, 但量子力学已成为现代科学的重要基石。在应用上,它导致了激光、半导体和核能技术的建立,深刻地影响了当代人类社会的生产力。一. 光量子光量子是指光波客观上具有的基本能量(动量)单元。它代表的量子观念起源于二十世纪初对黑体辐射的研究. 普朗克发现, 为了解释实验中发现的黑体辐射能量的频率分布,必须假设电磁场辐射只能以“量子”方式进行,即发射和吸收的能量只能是每个“量子”能量的整数倍。这是与经典力学中能量连续性不一样的革命性观念。由此, 爱因斯坦进一步明确提出光量子(或光子)的概念,认为辐射场是由光量子组成。光子与电子碰撞,其行为很象一个有特定能量和动量的实物粒子。由此可以很好地解释了光电效应:光照射到金属表面,只有当光的频率足够大时,电子才能克服表面的逸出功,脱离金属表面。爱因斯坦进一步应用能量的不连续性,成功地解释了固体比热在 T=0 度时的行为. 光波能量不连续的量子观念, 进一步启发玻尔对于卢瑟福原子有核模型的深刻研究。他认为,原子只能存在于分立的能量定态,辐射只能发生原子在两个定态之间跃迁。这个观点克服了经典理论对原子有核模型预言(绕核电子会由于电磁场辐损失能量、塌缩到原子核上)与现实原子基本稳定的矛盾,成功地解释了实验中总结出来的氢原子光谱 Rydberg—Ritz 组合公式。二. 物质波量子概念另一个重要方面是德布罗意物质波概念的引入。德布罗意把光的波粒二象性观点加以推广,认为一切微观粒子都具有波动性。一个动量为 p,能量为E 的自由的粒子,相当于一个波长为λ=h/p、频率为ω=E/h、沿粒子运动方向传播的平面波。许多实物粒子物质波的波长很短。例如,能量为 100 电子伏的电子, 其物质波波长仅为 0.12 纳米。 室温下氢原子的物质波波长更短, 仅为 0.021纳米。 1927 年,美国物理学家戴维逊和革末,在进行电子散射实验时,一次意外事故使他们观测到和 X 射线衍射类似的图像。同年,英国物理学家 G.P.汤姆逊完成了电子束穿过多晶薄膜的衍射实验。这些都证明了电子具有波动性。以后,物理学家还陆续证实中子、质子乃至原子、分子等等微观粒子都具有波动性。对于宏观物体而言,由于其物质波波长极短(远远小于宏观物体的尺度),其波动效应通常很难观察到的。三:不确定关系与互补(并协)原理在经典物理中,描述质点特征的几个物理量通常可以在任意精度内加以同时测量。当微观粒子表现为物质波,它的空间位置和动量是不能同时确定的,只会有不确定值?p 和?x。德国物理学家海森伯指出,动量和位置不能同时确定的程度,由普朗克常量 h 加以限定,具体结果表示为“不确定性关系”: ?p?x≥h/2。它量子理论描述的微观粒子最基本特征之一。对此物理上的一种直观的解释是海森伯提出的“测量干扰”的观念。例如,为了观测电子用光去照射它,要求观测得精确(即?x 越小),就得用波长短的光去照射电子;光子波长越短意味着光子动量越大,电子受到碰撞后其动量偏差?p 越大。在物质波的双缝干涉实验中,如果准确测量到粒子通过了哪一个缝,干涉条纹便不再存在了-发生量子退相干。玻尔认为,量子退相干根源在于互补性(并协)原理:物质存在着波粒二象性,但在同一个实验中波动性和粒子性是互相排斥的。知道粒子走哪一条缝,等于强调粒子性(只有“粒子”才具有确定位置,而波则弥散于整个空间)。根据互补性原理,波动性被排斥了,干涉条纹便消失了。对于量子退相干,通常也可以用海森伯“测量扰动”解释,但测量扰动并不是退相干唯一的根本原因。在不干扰冷原子空间运动的前提下, 1998 年的冷原子干涉实验利用内部状态记录了空间路径的信息(形成了原子束空间状态和内部状态的纠缠态),导致干涉条纹的消失。四:量子力学量子力学是描述微观世界运动的基本理论,它包括互为等价的矩阵力学和波动力学。为了发展玻尔思想,“以适用于更复杂的原子”, 1924 年,海森堡首先提出了革命性观点:在原子世界,每个可观察的实验结果(如氢原子谱线)总是与两个“玻尔轨道”有关,一个绝对的、由速度和坐标同时确定的轨道在描述原子的微观理论中是没有意义的。人们应当处处使用“两个轨道”来描述可观察的物理量。例如,原子的电磁辐射可以由电子坐标随时间的变化来描述,可能辐射的频率是其付里页展开式中出现的频率—Rydberg—Ritz 组合中有两个指标的实数。于是应当把坐标和动量等可观察物理量都看成具有两个指标元素的矩阵(或算符)。这时,坐标 Q 和动量 P 是不对易的,即 QP 不等于 PQ。在玻恩和约当的协作下,海森堡这个重要发现导致了矩阵力学的建立。它的诞生成功地克服了玻尔理论处理复杂原子时遇到的困难。量子力学另一表述-波动力学是薛定谔在 1924 年建立的。其核心是用满足薛定谔方程的时空点上的波函数描述粒子的运动。根据玻恩提出的几率解释,波函数的绝对值平方代表了电子在空间的几率分布。例如,原子中的电子可以用波函数描述,形成所谓的电子云。在波动力学中,原子的定态是薛定谔方程的本征态,相应的本征值就是原子的能级。原子的电磁辐射可描述为从一个能级到另外一个能级的跃迁。狄拉克通过建立表象理论,把矩阵力学和波动力学的描述完美地结合起来,而且把它推广到狭义相对论描述的高速运动情况,成功地预言了正电子的存在。反物质粒子的发现,把量子力学理论推上科学的顶峰。(本文中的文字内容转自孙昌璞院士的文章:什么是量子)
量子(quantum)是现代物理的重要概念。最早是M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍。后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。量子英文名称量子一词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”。在物理学中常用到量子的概念,指一个不可分割的基本个体。例如,“光的量子”(光子)是光的单位。而延伸出的量子力学、量子光学等成为不同的专业研究领域。其基本概念为所有的有形性质是“可量子化的”。“量子化”指其物理量的数值是特定的,而不是任意值。例如,在原子中,电子的能量是可量子化的。这决定原子的稳定和一般问题。在20世纪的前半期,出现了新的概念。许多物理学家将量子力学视为了解和描述自然的的基本理论。
量子是一个物理概念,没有大小之分,量子的性质指其物理量的数值是特定的,而不是任意值。  量子(quantum)是现代物理的重要概念。最早是M·普朗克在1900年提出的。他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍。后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。这同以牛顿力学为代表的经典物理有根本的区别。量子化现象主要表现在微观物理世界。描写微观物理世界的物理理论是量子力学。  量子一词来自拉丁语quantum,意为“有多少”,代表“相当数量的某物质”。在物理学中常用到量子的概念,指一个不可分割的基本个体。例如,“光的量子”是光的单位。而延伸出的量子力学、量子光学等更成为不同的专业研究领域。  其基本概念为所有的有形物质是“可量子化的”。“量子化”指其物理量的数值是特定的,而不是任意值。例如,在(休息状态的)原子中,电子的能量是可量子化的。这决定原子的稳定和一般问题。  在20世纪的前半期,出现了新的概念。许多物理学家将量子力学视为了解和描述自然的的基本理论。在量子出现在世界上100多年间,经过普朗克,爱因斯坦,斯蒂芬霍金等科学家的不懈努力,已初步建立量子力学理论。
量子可以理解为一份一份的粒子

量子是什么东西有什么性质有多大呢

文章TAG:什么量子芯片是什么什么是量子芯片

最近更新

相关文章