首页 > 产品 > 知识 > 表面增强拉曼散射,如何增强分子raman光谱强度

表面增强拉曼散射,如何增强分子raman光谱强度

来源:整理 时间:2023-08-26 21:49:34 编辑:智能门户 手机版

本文目录一览

1,如何增强分子raman光谱强度

拉曼散射的强度与入射光强成正比,与入射光频率的四次方成正比,与被测物质的拉曼散射截面成正比。所以在待测物一定的情况下,增强入射光的强度、提高入射光频率,都可以增强拉曼光谱强度。另外,用合适形状的腔体,使激发光在其中多次反射,就可以多次激发拉曼散射,增强拉曼光谱强度

如何增强分子raman光谱强度

2,sers是什么意思

SERS的意思如下:SERS是表面增强拉曼散射(surface-enhanced Raman scatting)的英文缩写,它是指一种特殊的拉曼散射现象,是指在一些特殊的材料表面,分子的拉曼散射光谱强度能得到非常显著的增强。拓展资料:拉曼散射光谱可以反应分子的结构信息,分子结构的任何微小变化都会非常敏感反映在拉曼散射光谱中,所以拉曼光谱可用来对物质进行结构分析,而这种散射光谱的显著的增强,能使人们可以更轻易地观察和利用拉曼散射光谱。可以说,正是由于表面增强拉曼散射现象的发现,拉曼散射光谱的应用才得到了前所未有的发展。1974 年,Fleischmann 等在粗糙的银电极上观测到了增强的吡啶的拉曼信号,这是人们首次观测到表面增强拉曼散射现象,但当时这种拉曼信号的异常增强被错误认为由于是基底粗糙引起的表面增加而使吸附分子增多而导致的。而表面增强拉曼散射正式发现是在 1977 年,Van Duyne 等仔细比较了实验和计算发现有效拉曼散射截面的增强(104-106倍)远远大于因吸附分子增加而引起的增强,指出这种增强是来自一种与粗糙的电极表面相关的表面增强效应。后来这种现象被命名为表面增强拉曼散射(surface-enhanced Raman scattering),简称 SERS。

sers是什么意思

3,分子平躺和垂直吸附时表面增强拉曼怎么变

表面增强拉曼光谱法即SERS。吸附在粗糙化的金属表面(通常为Ag)的分子具有很强的拉曼散射现象,这种表面增强效应称为表面增强拉曼散射。其谱图能提供样品分子结构、构象等信息,能提供样品分子吸附部位和吸附取向随外部变化的消息。
期待看到有用的回答!

分子平躺和垂直吸附时表面增强拉曼怎么变

4,表面增强拉曼光谱的背景简介

拉曼散射效应非常弱,其散射光强度约为入射光强度的10-6~10-9,极大地限制了拉曼光谱的应用和发展 。1974年Fldshmann等人发现吸附在粗糙金银表面的tt旋分子的拉曼信号强度得到很大程度的提高,同时信号强度随着电极所加电位的变化而变化。1977 年,Jeanmaire 与 Van Duyne , Albrecht 与 Creighton等人经过系统的实验研究和理论计算,将这种与银、金、铜等粗糙表面相关的增强效应称为表面增强拉曼散射(Surface enhanced Raman Scattering, SERS)效应,对应的光谱称为表面增强拉曼光谱。随后,人们在其它粗糖表面也观察到SERS现象。SERS技术迅速发展,在分析科学、表面科学以及生物科学等领域得到广泛应用,成长为一种非常强大的分析工具。关于增强机理的本质,学术界目前仍未达成共识,大多数学者认为SERS增强主要由物理增强和化学增强两个方面构成,并认为前者占主导地位,而后者在增强效应中只贡献1~2个数量级。物理增强对吸附到基底附近分子的增强没有选择性。大量实验研究表明,单纯的物理或化学增强机理都不足以解释所有的SERS现象,增强过程的影响因素十分复杂,在很多体系中,认为这两种因素可能同时起作用,它们的相对贡献在不同的体系中有所不同。

5,如何计算表面增强拉曼散射SERS增强因子 EF

根据增强因子计算公式:Isurf 是SERS的信号强度 N serf SERS 测试中被增强的分子数目,I vol以及N vol是正常拉曼光谱中的信号强度以及被测分子数目。因而需要知道在SERS增强中,被测试的分子数目。 对于测试SERS活性基底滴加在玻璃薄片,就是计算激光光斑中纳米粒子的数目,再按照探针分在在纳米粒子上单层吸附处理,来计算总共被增强的分子数目。
可以私聊我~

6,请教关于表面增强拉曼散射的问题 谢谢

表面增强拉曼散射(Surface-enhancedRamanScattering,SERS)主要是纳米尺度的粗糙表面或颗粒体系所具有的异常光学增强现象,它可以将吸附在材料表面的分子的拉曼信号放大约106倍,对于特殊的纳米量级粒子形态分布的基底表面,信号的增强甚至可以高达1014倍,因此在探测器的应用和单分子检测方面有着巨大的发展潜力。表面增强拉曼散射(SERS):这是使分子或晶体歌唱声音更强大的另一种方法,换句话说也是检测极少量物质的一种方法,目前人们已开始用这一方法检测单个分子了。1974年,Fleishmann等人发现,对光滑银电极表面进行粗糙化处理后,首次获得吸附在银电极表面上单分子层吡啶分子的高质量的拉曼光谱。随后VanDuyne及其合作者通过系统的实验和计算发现吸附在粗糙银表面上的每个吡啶分子的拉曼散射信号与溶液相中的吡啶的拉曼散射信号相比,增强约6个数量级(即10倍),指出这是一种与粗糙表面相关的表面增强效应,被称为SERS效应。这一结果立即在物理、化学、表面界面等研究领域中引起轰动,是什么原因引起这么大的散射增强?那些金属和那些分子可以产生这一效应?这个效应在表面探测、催化、电化学等研究中会有那些应用?这一系列问题立即成了人们研究的热门对象。经过20多年的研究后,人们知道目前除了电极表面之外,人们还在超高真空系统中蒸镀的金属表面上、金属胶体颗粒表面以及普通金属板经过适当的处理后表面上都进行了SERS实验。这些实验不仅为研究SERS机制提供了更多的信息,也为SERS应用提供了更多的可能。关于SERS的机制,经过研究,人们提出了十几种理论模型,目前较普遍的观点是SERS活性的表面往往能产生被增强的局域电场,是金属表面等离子共振振荡引起的,这被称为物理增强。而分子在金属上的吸附常伴随着电荷的转移引起分子能级的变化,或者分子吸附在特别的金属表面结构点上也导致增强,这两种情况均被称为化学增强。查看原帖>>

7,什么是表面增强拉曼散射

表面增强拉曼散射 (surface enhancement of Raman scattering ),英文简称SERS。1974年M.Fleishmann等人测量到了电化学池中经过几次氧化还原反应的银表面吸附吡啶分子的拉曼散射线。1976年R.P.Vandyne等证实了上述实验并推算出银表面吸附的吡啶的喇曼散射截面比纯吡啶的大1000000倍。求采纳
表面增强拉曼散射(surface-enhanced raman scattering,sers)主要是纳米尺度的粗糙表面或颗粒体系所具有的异常光学增强现象,它可以将吸附在材料表面的分子的拉曼信号放大约106 倍,对于特殊的纳米量级粒子形态分布的基底表面,信号的增强甚至可以高达1014 倍,因此在探测器的应用和单分子检测方面有着巨大的发展潜力。表面增强拉曼散射(sers): 这是使分子或晶体歌唱声音更强大的另一种方法,换句话说也是检测极少量物质的一种方法,目前人们已开始用这一方法检测单个分子了。1974年,fleishmann等人发现,对光滑银电极表面进行粗糙化处理后,首次获得吸附在银电极表面上单分子层吡啶分子的高质量的拉曼光谱。随后van duyne及其合作者通过系统的实验和计算发现吸附在粗糙银表面上的每个吡啶分子的拉曼散射信号与溶液相中的吡啶的拉曼散射信号相比,增强约6个数量级(即10倍),指出这是一种与粗糙表面相关的表面增强效应,被称为sers效应 。这一结果立即在物理、化学、表面界面等研究领域中引起轰动,是什么原因引起这么大的散射增强?那些金属和那些分子可以产生这一效应?这个效应在表面探测、催化、电化学等研究中会有那些应用?这一系列问题立即成了人们研究的热门对象。经过20多年的研究后,人们知道目前除了电极表面之外,人们还在超高真空系统中蒸镀的金属表面上、金属胶体颗粒表面以及普通金属板经过适当的处理后表面上都进行了sers实验。这些实验不仅为研究sers机制提供了更多的信息,也为sers应用提供了更多的可能。关于sers的机制,经过研究,人们提出了十几种理论模型,目前较普遍的观点是sers活性的表面往往能产生被增强的局域电场,是金属表面等离子共振振荡引起的,这被称为物理增强。而分子在金属上的吸附常伴随着电荷的转移引起分子能级的变化,或者分子吸附在特别的金属表面结构点上也导致增强,这两种情况均被称为化学增强。

8,几种羧基生物分子的Raman光谱及其表面增强拉曼散射SERS研究

【摘要】:拉曼(Raman)光谱技术是研究晶体或分子结构的一种重要工具.它能够快速获得分子振动的固有频率、分子对称性及分子内部作用力、表面处理、界面反应等较为丰富的信息.由于普通拉曼散射信号强度非常弱,灵敏度低,而限制了其在低检测限获取信息的能力.为了获得无干扰、高质量的拉曼光谱图,人们先后发展了激光拉曼光谱、傅立叶变换拉曼光谱(FT-Raman),表面增强拉曼散射(SERS)光谱、共振拉曼光谱、时间分辨拉曼光谱等新技术.表面增强拉曼散射(SERS)效应是指在特殊制备的一些金属良导体表面或溶胶中,吸附子的拉曼散射信号比普通拉曼散射信号大大增强的现象.由于其高探测灵敏度、高分辨率、水干扰小、可猝灭荧光、稳定性好及适合研究界面等特点,被广泛应用于表面研究、吸附物界而表面状态研究、生物大分子的界面取向及构型、构象研究和结构分析等.本文应用Raman光谱及SERS研究了几类含羧基结构的生物分子,其中包括:几种蛋白质氨基酸、DNA、抗癌药物、莽草酸.分别获得其Raman光谱及SERS;根据SERS选律和作用机理,推测了几种含羧基结构的生物分子在银粒子和金/银核-壳复合粒子两种基底表面的作用方式、吸附状态及其不同浓度pH值下的变化规律.另外,利用拉曼光谱探讨了几种蛋白质氨基酸与九芴甲氧羰基(Fmoc)的复合物分子内对应基团的振动情况.1.支链氨基酸在金/银核-壳复合纳米粒子上的FT-Raman光谱及其SERS研究 获得了亮氨酸,异亮氨酸及缬氨酸三种支链氨基酸的Raman光谱及其在金/银核-壳复合粒子基底表面的SERS光谱;由此结合金/银核-壳复合粒子基底的特性和SERS机制,探讨了三种支链氨基酸此基底表面不同的作用方式及其吸附模式.实验结果表明:支链氨基酸不同的SERS及其在金/银核-壳复合粒子基底表面不同的吸附状态主要为分子内对应的支链甲基的不同振动模式所致,而羧基在三种分子结构中都明显的与金银复合粒子产生了作用.又由于金/银核-壳复合粒子基底均一性和高SERS增强因子,尤其在不同浓度及pH值条件下,致使三种分子在其表面的SERS和吸附差异更为突出.2.抗癌药物与DNA相互作用的SERS研究 选择了三种含羧基或羧基变异结构的抗癌药物:卡铂、阿霉素和博莱霉素作为探针,研究了三种抗癌药物各自的拉曼光谱,在具有较强的SERS增强因子的银粒子基底表面的SERS;对拉曼峰进行了归属,通过对比研究三种抗癌药物与DNA相互作用的SERS,考察了三种抗癌药物与DNA在银粒子表面相互作用的情况及其影响变化.对抗癌药物的体外筛选提供有意义的参考.3.SERS研究含环状结构的氨基酸在银胶中的吸附状态 通过对比苯丙氨酸、组氨酸、色氨酸三种带环状结构的氨基酸的Raman光谱,分析了羧基在不同分子结构中的振动峰位差异;以及获得了三种氨基酸分子在银粒子表面的SERS,结合SERS机理推测了三种环状结构氨基酸的吸附状态,尤其分子结构中羧基的振动峰位及吸附差异.最后探讨了氨基酸与银胶的不同作用模式及其不同浓度,pH值对吸附状态的影响.4.莽草酸的FT-IR、FT-Raman光谱及SERS研究 莽草酸为我国盛产,是目前治疗H5N1高致病性禽流感唯一证实有效的药物“达菲”的合成原料.莽草酸还具有其它许多生物药性如抗炎、镇痛作用.莽草酸的分子结构为一个羧基和三个羟基取代在环己烯环结构上,本文测得了莽草酸的Raman光谱,推测了各峰位对应的基团扰动;同时考察了莽草酸在银粒子表面的吸附状态,尤其羧基的吸附机理和所受浓度,pH值的影响.为进一步研究莽草酸在新型药物合成、开发及其与底物作用机制等方面提供了十分有益参考.5.Fmoc-氨基酸的振动光谱 获得了Fmoc-基团与亮氨酸,异亮氨酸,蛋氨酸,苯丙氨酸和缬氨酸五种氨基酸分子复合物的FT-Raman光谱,并对其中各特殊振动峰位进行了归属、指认;由此,推测了Fmoc-基团与五种氨基酸分子的复合物中的各特殊基团的振动模型,尤其对羧基的振动情况进行了归纳.为进一步研究氨基酸及其它生物分子提供参.

9,为什么表面增强拉曼散射用于分子结构的探索

表面增强拉曼散射(SERS)效应是指在特殊制备的一些金属良导体表面或溶胶中,吸附予的拉曼散射信号比普通拉曼散射信号大大增强的现象.由于其高探测灵敏度、高分辨率、水干扰小、可猝灭荧光、稳定性好及适合研究界面等特点,被广泛应用于表面研究、吸附物界而表面状态研究、生物大分子的界面取向及构型、构象研究和结构分析等.本文应用Raman光谱及SERS研究了几类含羧基结构的生物分子,其中包括:几种蛋白质氨基酸、DNA、抗癌药物、莽草酸.分别获得其Raman光谱及SERS;根据SERS选律和作用机理,推测了几种含羧基结构的生物分子在银粒子和金/银核-壳复合粒子两种基底表面的作用方式、吸附状态及其不同浓度pH值下的变化规律.另外,利用拉曼光谱探讨了几种蛋白质氨基酸与九芴甲氧羰基(Fmoc)的复合物分子内对应基团的振动情况. 1.支链氨基酸在金/银核-壳复合纳米粒子上的FT-Raman光谱及其SERS研究获得了亮氨酸,异亮氨酸及缬氨酸三种支链氮基酸的Raman光谱及其在金/银核-壳复合粒子基底表面的SELLS光谱;由此结合金/银核-壳复合粒子基底的特性和SERS机制,探讨了三种支链氨基酸此基底表面不同的作用方式及其吸附模式.实验结果表明:支链氨基酸不同的SERS及其在金/银核-壳复合粒子基底表面不同的吸附状态主要为分子内对应的支链甲基的不同振动模式所致,而羧基在三种分子结构中都明显的与金银复合粒子产生了作用.又由于金/银核-壳复合粒子基底均一性和高SERS增强因子,尤其在不同浓度及pH值条件下,致使三种分子在其表面的SERS和吸附差异更为突出. 2.抗癌药物与DNA相互作用的SERS研究选择了三种含羧基或羧基变异结构的抗癌药物:卡铂、阿霉素和博莱霉素作为探针,研究了三种抗癌药物各自的拉曼光谱,在具有较强的SERS增强因子的银粒子基底表面的SERS;对拉曼峰进行了归属,通过对比研究三种抗癌药物与DNA相互作用的SERS,考察了三种抗癌药物与DNA在银粒子表面相互作用的情况及其影响变化.对抗癌药物的体外筛选提供有意义的参考. 3.SERS研究含环状结构的氨基酸在银胶中的吸附状态通过对比苯丙氨酸、组氨酸、色氨酸三种带环状结构的氨基酸的Raman光谱,分析了羧基在不同分子结构中的振动峰位差异;以及获得了三种氨基酸分子在银粒子表面的SERS,结合SERS机理推测了三种环状结构氨基酸的吸附状态,尤其分子结构中羧基的振动峰位及吸附差异.最后探讨了氨基酸与银胶的不同作用模式及其不同浓度,pH值对吸附状态的影响. 4.莽草酸的FT-IR、FT-Raman光谱及SERS研究莽草酸为我国盛产,是目前治疗H5N1高致病性禽流感唯一证实有效的药物“达菲”的合成原料.莽草酸还具有其它许多生物药性如抗炎、镇痛作用.莽草酸的分子结构为一个羧基和三个羟基取代在环己烯环结构上,本文测得了莽草酸的Raman光谱,推测了各峰位对应的基团扰动;同时考察了莽草酸在银粒子表面的吸附状态,尤其羧基的吸附机理和所受浓度,pH值的影响.为进一步研究莽草酸在新型药物合成、开发及其与底物作用机制等方面提供了十分有益参考. 5.Fmoc-氨基酸的振动光谱获得了Fmoc-基团与亮氨酸,异亮氨酸,蛋氨酸,苯丙氨酸和缬氨酸五种氨基酸分子复合物的FT-Raman光谱,并对其中各特殊振动峰位进行了归属、指认;由此,推测了Fmoc-基团与五种氨基酸分子的复合物中的各特殊基团的振动模型,尤其对羧基的振动情况进行了归纳.为进一步研究氨基酸及其它生物分子提供参.

10,请教关于表面增强拉曼散射的问题 谢谢

表面增强拉曼散射(Surface-enhanced Raman Scattering,SERS)主要是纳米尺度的粗糙表面或颗粒体系所具有的异常光学增强现象,它可以将吸附在材料表面的分子的拉曼信号放大约106 倍,对于特殊的纳米量级粒子形态分布的基底表面,信号的增强甚至可以高达1014 倍,因此在探测器的应用和单分子检测方面有着巨大的发展潜力。表面增强拉曼散射(SERS): 这是使分子或晶体歌唱声音更强大的另一种方法,换句话说也是检测极少量物质的一种方法,目前人们已开始用这一方法检测单个分子了。1974年,Fleishmann等人发现,对光滑银电极表面进行粗糙化处理后,首次获得吸附在银电极表面上单分子层吡啶分子的高质量的拉曼光谱。随后Van Duyne及其合作者通过系统的实验和计算发现吸附在粗糙银表面上的每个吡啶分子的拉曼散射信号与溶液相中的吡啶的拉曼散射信号相比,增强约6个数量级(即10倍),指出这是一种与粗糙表面相关的表面增强效应,被称为SERS效应 。这一结果立即在物理、化学、表面界面等研究领域中引起轰动,是什么原因引起这么大的散射增强?那些金属和那些分子可以产生这一效应?这个效应在表面探测、催化、电化学等研究中会有那些应用?这一系列问题立即成了人们研究的热门对象。经过20多年的研究后,人们知道目前除了电极表面之外,人们还在超高真空系统中蒸镀的金属表面上、金属胶体颗粒表面以及普通金属板经过适当的处理后表面上都进行了SERS实验。这些实验不仅为研究SERS机制提供了更多的信息,也为SERS应用提供了更多的可能。关于SERS的机制,经过研究,人们提出了十几种理论模型,目前较普遍的观点是SERS活性的表面往往能产生被增强的局域电场,是金属表面等离子共振振荡引起的,这被称为物理增强。而分子在金属上的吸附常伴随着电荷的转移引起分子能级的变化,或者分子吸附在特别的金属表面结构点上也导致增强,这两种情况均被称为化学增强。
表面增强拉曼散射(Surface-enhanced Raman Scattering,SERS)主要是纳米尺度的粗糙表面或颗粒体系所具有的异常光学增强现象,它可以将吸附在材料表面的分子的拉曼信号放大约106 倍,对于特殊的纳米量级粒子形态分布的基底表面,信号的增强甚至可以高达1014 倍,因此在探测器的应用和单分子检测方面有着巨大的发展潜力。表面增强拉曼散射(SERS): 这是使分子或晶体歌唱声音更强大的另一种方法,换句话说也是检测极少量物质的一种方法,目前人们已开始用这一方法检测单个分子了。1974年,Fleishmann等人发现,对光滑银电极表面进行粗糙化处理后,首次获得吸附在银电极表面上单分子层吡啶分子的高质量的拉曼光谱。随后Van Duyne及其合作者通过系统的实验和计算发现吸附在粗糙银表面上的每个吡啶分子的拉曼散射信号与溶液相中的吡啶的拉曼散射信号相比,增强约6个数量级(即10倍),指出这是一种与粗糙表面相关的表面增强效应,被称为SERS效应 。这一结果立即在物理、化学、表面界面等研究领域中引起轰动,是什么原因引起这么大的散射增强?那些金属和那些分子可以产生这一效应?这个效应在表面探测、催化、电化学等研究中会有那些应用?这一系列问题立即成了人们研究的热门对象。经过20多年的研究后,人们知道目前除了电极表面之外,人们还在超高真空系统中蒸镀的金属表面上、金属胶体颗粒表面以及普通金属板经过适当的处理后表面上都进行了SERS实验。这些实验不仅为研究SERS机制提供了更多的信息,也为SERS应用提供了更多的可能。关于SERS的机制,经过研究,人们提出了十几种理论模型,目前较普遍的观点是SERS活性的表面往往能产生被增强的局域电场,是金属表面等离子共振振荡引起的,这被称为物理增强。而分子在金属上的吸附常伴随着电荷的转移引起分子能级的变化,或者分子吸附在特别的金属表面结构点上也导致增强,这两种情况均被称为化学增强。
可以参考一下 http://www.hxtb.org/col/2007/71204.pdf http://tieba.baidu.com/f?kz=768229895
1,普通的就可以。2如果液体最好在水溶液里,固体也可以
文章TAG:表面增强拉曼散射如何表面增强拉曼散射

最近更新

  • 大学生分期购物数据分析,专门针对大学生的分期购物平台有哪些大学生分期购物数据分析,专门针对大学生的分期购物平台有哪些

    购物节日:大学生分期购物节日是什么时候?大学生Staging购物Section大学生Staging购物Section于2015年9月1日上线,在为期一个月的正式活动期间(9月1日至9月30日)实施。据统计,2015年大学生.....

    知识 日期:2023-08-26

  • lora技术,LoRa与ZigBee的区别是什么lora技术,LoRa与ZigBee的区别是什么

    LoRa与ZigBee的区别是什么2,如何理解LoRa技术有哪些应用3,物联网技术标准NBIOT和LoRa是个什么鬼4,如何评价LoRa这项应用于低功率长距离场景的物联网传输技术5,什么时候lora物联网技术6,NBlo.....

    知识 日期:2023-08-26

  • l515,L515这款显卡大家觉得怎样l515,L515这款显卡大家觉得怎样

    L515这款显卡大家觉得怎样2,东芝笔记本L515型号怎么样3,东芝L515怎么样啊需要大家的意见3Q4,东芝L515好嘛配置怎么样请问5,评价一下东芝L5156,东芝笔记本L515使用说明1,L515这款显卡大家觉得.....

    知识 日期:2023-08-26

  • 做饭的机器人怎么画,做饭机器人作文做饭的机器人怎么画,做饭机器人作文

    这台机器如何绘图?这台机器如何绘图?机器人机器人的脚怎么画如下:1。先画机器人的头,画一个长方形,两边画耳朵,画圆眼睛,头顶画一个天线,那么我们来看看机器人《简笔画步骤图解教程》,看看机器.....

    知识 日期:2023-08-26

  • 英国插头,英国电源插头和港版iphone插头是一样的吗英国插头,英国电源插头和港版iphone插头是一样的吗

    英国电源插头和港版iphone插头是一样的吗2,英式插座长什么样子3,去英国要带几个转换插头4,英国的插座是什么样的5,英国电气插头采用什么标准6,英规插头以及如何使用7,英国和法国的转换电插头.....

    知识 日期:2023-08-26

  • 线圈电感计算公式,求线圈电感的计算公式线圈电感计算公式,求线圈电感的计算公式

    求线圈电感的计算公式2,电感的相关公式3,线圈电感电感线圈计算公式定义作用4,电感量的计算公式1,求线圈电感的计算公式线圈电感的计算公式涉及要素很多,如线圈尺寸(直径、长度)、线径、内部.....

    知识 日期:2023-08-26

  • 弛豫时间,弛豫时间的分类弛豫时间,弛豫时间的分类

    弛豫时间的分类2,为什么规定磁化减小63的时间为弛豫时间3,气压平衡的弛豫时间和气温平衡的弛豫时间为什么差别较4,频散和衰减中的弛豫时间是指什么5,弛豫时间的概述6,驰豫时间的定义是什么.....

    知识 日期:2023-08-26

  • 香港插头图片,转换插头你准备好了吗香港插头图片,转换插头你准备好了吗

    转换插头你准备好了吗2,香港通用火牛充电头是怎样的3,从多伦多飞往香港的国泰航班上作为插头是哪种什么样子的最好附图4,香港插座规格与内地不同那内地的电子商品在香港怎么用呢或者香1,转.....

    知识 日期:2023-08-26