首页 > 产品 > 知识 > 压缩感知,如何理解压缩感知

压缩感知,如何理解压缩感知

来源:整理 时间:2023-09-05 08:09:58 编辑:智能门户 手机版

本文目录一览

1,如何理解压缩感知

同压缩感知一样,矩阵填补也是一个类似的反问题——能否预测矩阵中缺失的元素。对于这个问题,Candies给出的答案是:对一个N*N的矩阵进行随机的下采样,得到C*NlogN个样本并保证每一行每一列至少保留一个元素。如果原始矩阵时低秩的,那么可以通过求解矩阵的奇异值最小化问题(又称核范数规划)精确恢复原始矩阵。发现了吧?这个结论里没有稀疏性,没有字典,取而代之的是低秩这个条件——换句话说,我们不需要再去寻找可以稀疏表示信号的字典了,只需要知道信号组成的矩阵时低秩的即可。另外一个好处就是,观测矩阵的约束条件也得到了放松,不再需要去考虑和字典的非相关性——因为已经没有字典了。单纯的随机采样就足以满足条件,模拟端的积分器(电信号处理用),运动或反射模块(光信号处理用)都可以下岗了——世界从此和谐了。
压缩感知致力于从不充分、线性量测中恢复原始稀疏信号。压缩感知被用在很多领域,无线通信,雷达,医学器械,图像处理等等等

如何理解压缩感知

2,什么是压缩感知

压缩感知(Compressed sensing),也被称为压缩采样(Compressive sampling)或稀疏采样(Sparse sampling),是一种寻找欠定线性系统的稀疏解的技术。压缩感知被应用于电子工程尤其是信号处理中,用于获取和重构稀疏或可压缩的信号。这个方法用到讯号稀疏的特性,得以从相对较少的测量值还原出原来整个欲得知的讯号。MRI就是一个可能使用此方法的应用。这一方法至少已经存在了四十年,由于David Donoho、Emmanuel Candès和陶哲轩的工作,最近这个领域有了长足的发展。

什么是压缩感知

3,压缩感知究竟是什么原理

压缩感知(compressed sensing)。所谓压缩感知,最核心的概念在于试图从原理上降低对一个信号进行测量的成本。比如说,一个信号包含一千个数据,那么按照传统的信号处理理论,至少需要做一千次测量才能完整的复原这个信号。这就相当于是说,需要有一千个方程才能精确地解出一千个未知数来。但是压缩感知的想法是假定信号具有某种特点(比如文中所描述得在小波域上系数稀疏的特点),那么就可以只做三百次测量就完整地复原这个信号(这就相当于只通过三百个方程解出一千个未知数)。可想而知,这件事情包含了许多重要的数学理论和广泛的应用前景,因此在最近三四年里吸引了大量注意力,得到了非常蓬勃的发展。陶哲轩本身是这个领域的奠基人之一(可以参考《陶哲轩:长大的神童》一文),因此这篇文章的权威性毋庸讳言。另外,这也是比较少见的由一流数学家直接撰写的关于自己前沿工作的普及性文章。需要说明的是,这篇文章是虽然是写给非数学专业的读者,但是也并不好懂,也许具有一些理工科背景会更容易理解一些。

压缩感知究竟是什么原理

4,压缩感知过时了吗

没有过时,依然是主流畅谈的话题,使用度依旧广泛。压缩感知的核心点在于,其不遵从奈奎斯特采样定理。而这原因在于,压缩感知的采样是随机的,不等间距的,故不用管奈奎斯特。不过压缩感知也是有要求的,它需要保证信号是稀疏的。一旦信号不稀疏,进行违背奈奎斯特的随机非等间距采样时,频域上的交叠会导致难以恢复原始信号。在压缩感知过程中,如果将采样频率降低,使得其很小,那么采样的时域间隔就会相对很大,加上一定方式的随机采样,此时采样得到的数据量就会很小,从而实现了一种压缩。压缩感知与传统的采样+压缩的模式不同的是,它首先不遵从奈奎斯特采样定理,其次,它并没有分为采样和压缩,应该说,压缩感知的采样就是压缩。采样之后将采样的数据直接传输,之后在接收端便可以通过适当的重构算法进行重构。

5,什么是压缩感知

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。   压缩感知理论的核心思想主要包括两点。   第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。   另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。压缩感知压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

6,压缩感知的基本原理

压缩感知是一种新兴的信号处理技术,它利用了信号的稀疏性和随机测量理论,从而能够在测量数据量和复杂度减小的同时保持信号信息的完整性和准确性。压缩感知的基本原理可以简要概括如下:1. 稀疏表示:信号可能存在一个稀疏基或字典,即信号可以用很少的基向量(或原子)来近似表示。这意味着信号在某些基向量上的系数为零或接近于零。2. 随机测量:压缩感知使用一组随机测量矩阵来对信号进行测量。这些测量矩阵通常是随机选择的,例如高斯矩阵或伯努利矩阵。 3. 压缩感知编码:测量矩阵和信号的稀疏表示可以组成一个线性方程组,通过求解这个方程组,可以重建出原始信号。整个过程可以用以下的数学公式表示:y = Φx其中,y是测量向量,Φ是测量矩阵,x是原始信号的稀疏表示。我们的目标是找到x,使得上述公式成立。因此,压缩感知的关键在于如何求解x。 基于压缩感知的解码算法有很多种,例如最小二乘法、基于迭代阈值法的稀疏表示、基于贪心算法的正交匹配追踪(OMP)和基于迭代算法的迭代软阈值(IST)等。这些算法的共同点是通过对原始信号进行多次迭代计算,逐步逼近原始信号的稀疏表示。总之,压缩感知利用信号的稀疏性和随机测量理论,通过测量矩阵和稀疏表示计算出原始信号,从而实现信号的压缩和重构。这种方法可以在保持信号信息的完整性和准确性的同时大幅度降低数据传输的复杂度和成本。

7,压缩感知的主要应用

认知无线电方向:宽带谱感知技术是认识无线电应用中一个难点和重点。它通过快速寻找监测频段中没有利用的无线频谱,从而为认知无线电用户提供频谱接入机会。传统的滤波器组的宽带检测需要大量的射频前端器件,并且不能灵活调整系统参数。普通的宽带接收电路要求很高的采样率,它给模数转换器带来挑战,并且获得的大量数据处理给数字信号处理器带来负担。针对宽带谱感知的难题,将压缩感知方法应用到宽带谱感知中:采用一个宽带数字电路,以较低的频谱获得欠采样的随机样本,然后在数字信号处理器中采用稀疏信号估计算法得到宽带谱感知结果。 信道编码:压缩传感理论中关于稀疏性、随机性和凸最优化的结论可以直接应用于设计快速误差校正编码, 这种编码方式在实时传输过程中不受误差的影响。在压缩编码过程中, 稀疏表示所需的基对于编码器可能是未知的. 然而在压缩传感编码过程中, 它只在译码和重构原信号时需要, 因此不需考虑它的结构, 所以可以用通用的编码策略进行编码. Haupt等通过实验表明如果图像是高度可压缩的或者SNR充分大, 即使测量过程存在噪声, 压缩传感方法仍可以准确重构图像。 波达方向估计:目标出现的角度在整个扫描空间来看,是极少数。波达方向估计问题在空间谱估计观点来看是一个欠定的线性逆问题。通过对角度个数的稀疏限制,可以完成压缩感知的波达方向估计。 波束形成:传统的 自适应波束形成因其高分辨率和抗干扰能力强等优点而被广泛采用。但同时它的高旁瓣水平和角度失匹配敏感度高问题将大大降低接收性能。为了改进Capon 波束形成的性能,这些通过稀疏波束图整形的方法限制波束图中阵列增益较大的元素个数,同时鼓励较大的阵列增益集中在波束主瓣中,从而达到降低旁瓣水平同时,提高主瓣中阵列增益水平,降低角度失匹配的影响。例如,最大主瓣旁瓣能量比,混合范数法,最小全变差。 运用压缩传感原理, RICE大学成功研制了\单像素压缩数码照相机。 设计原理首先是通过光路系统将成像目标投影到一个数字微镜器件(DMD)上, 其反射光由透镜聚焦到单个光敏二极管上, 光敏二极管两端的电压值即为一个测量值y, 将此投影操作重复M次, 得到测量向量 , 然后用最小全变分算法构建的数字信号处理器重构原始图像。数字微镜器件由数字电压信号控制微镜片的机械运动以实现对入射光线的调整。 由于该相机直接获取的是M次随机线性测量值而不是获取原始信号的N(M,N)个像素值, 为低像素相机拍摄高质量图像提供了可能.。压缩传感技术也可以应用于雷达成像领域, 与传统雷达成像技术相比压缩传感雷达成像实现了两个重要改进: 在接收端省去脉冲压缩匹配滤波器; 同时由于避开了对原始信号的直接采样, 降低了接收端对模数转换器件带宽的要求. 设计重点由传统的设计昂贵的接收端硬件转化为设计新颖的信号恢复算法, 从而简化了雷达成像系统。 生物传感中的传统DNA芯片能平行测量多个有机体, 但是只能识别有限种类的有机体, Sheikh等人运用压缩传感和群组检测原理设计的压缩传感DNA芯片克服了这个缺点。 压缩传感DNA芯片中的每个探测点都能识别一组目标, 从而明显减少了所需探测点数量. 此外基于生物体基因序列稀疏特性, Sheikh等人验证了可以通过置信传播的方法实现压缩传感DNA芯片中的信号重构。

8,什么是压缩感知

压缩感知,又称压缩采样,压缩传感。英文为Compressed Sampling、 Compressive Sening或者是Compressed sensing。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。经典的采样定理为香农/乃奎斯特采样,即要保证信号的完全恢复,至少要有2倍的信号频率采样。但是这种采样当中,其实信息是冗余的。压缩感知告诉我们,如果知道信号是稀疏的,那么可以用远低于乃奎斯特采样率,一样可以很好的恢复信号。压缩感知的核心:信号是稀疏的(即其中有K个为非零元素,其他的元素都为0),采样矩阵和稀疏基是不相关的。相关内容较多,百度知道里面一下介绍不清楚。视频资料:1.陆吾生教授于2010年在华东师范大学讲过"Compressed Sening and Signal Processing", 讲的是中文,易听懂,有点科普性质。2.Professor Justin Romberg 作为压缩感知理论的创始人之一,2013年在清华大学讲过“Comprssive Sening and Spare Recovery ”, 这个视频要深入些,全英文讲座,需要较好的英文和数学功底。如果有兴趣深入学习,建议还是认认真真看文献。可以参考 http://dsp.rice.edu/cs 。这里前17篇是压缩感知的综述,看完后就对概念、模型、求解算法、应用有个整体的了解。网页中间的那么多文献是针对压缩感知理论在各个领域的运用。在最后的部分,是网上现有的针对该问题的求解工具箱,大多数是基于Matlab的。只要分析后自己的模型,可以套用工具箱求解,非常方便。

9,什么是压缩感知压缩传感compressedcompressive sensing

压缩感知(Compressive Sensing, or Compressed Sampling,简称CS),是近几年流行起来的一个介于数学和信息科学的新方向,由Candes、Terres Tao等人提出,挑战传统的采样编码技术,即Nyquist采样定理。压缩感知技术-理论  压缩感知理论为信号采集技术带来了革命性的突破,它采用非自适应线性投影来保持信号的原始结构,以远低于奈奎斯特频率对信号进行采样,通过数值最优化问题准确重构出原始信号。压缩感知技术-概念特征  压缩感知从字面上看起来,好像是数据压缩的意思,而实则出于完全不同的考虑。经典的数据压缩技术,无论是音频压缩(例如 mp3),图像压缩(例如 jpeg),视频压缩(mpeg),还是一般的编码压缩(zip),都是从数据本身的特性出发,寻找并剔除数据中隐含的冗余度,从而达到压缩的目的。这样的压缩有两个特点:第一、它是发生在数据已经被完整采集到之后;第二、它本身需要复杂的算法来完成。相较而言,解码过程反而一般来说在计算上比较简单,以音频压缩为例,压制一个 mp3 文件的计算量远大于播放(即解压缩)一个 mp3 文件的计算量。    稍加思量就会发现,这种压缩和解压缩的不对称性正好同人们的需求是相反的。在大多数情况下,采集并处理数据的设备,往往是廉价、省电、计算能力较低的便携设备,例如傻瓜相机、或者录音笔、或者遥控监视器等等。而负责处理(即解压缩)信息的过程却反而往往在大型计算机上进行,它有更高的计算能力,也常常没有便携和省电的要求。也就是说,人们是在用廉价节能的设备来处理复杂的计算任务,而用大型高效的设备处理相对简单的计算任务。这一矛盾在某些情况下甚至会更为尖锐,例如在野外作业或者军事作业的场合,采集数据的设备往往曝露在自然环境之中,随时可能失去能源供给或者甚至部分丧失性能,在这种情况下,传统的数据采集-压缩-传输-解压缩的模式就基本上失效了。   压缩感知的概念就是为了解决这样的矛盾而产生的。既然采集数据之后反正要压缩掉其中的冗余度,而这个压缩过程又相对来说比较困难,那么我们为什么不直接「采集」压缩后的数据?这样采集的任务要轻得多,而且还省去了压缩的麻烦。这就是所谓的「压缩感知」,也就是说,直接感知压缩了的信息。压缩感知技术-应用影响  在大量的实际问题中,人们倾向于尽量少地采集数据,或者由于客观条件所限不得不采集不完整的数据。如果这些数据和人们所希望重建的信息之间有某种全局性的变换关系,并且人们预先知道那些信息满足某种稀疏性条件,就总可以试着用类似的方式从比较少的数据中还原出比较多的信号来。到今天为止,这样的研究已经拓展地非常广泛了。   但是同样需要说明的是,这样的做法在不同的应用领域里并不总能满足上面所描述的两个条件。有的时候,第一个条件(也就是说测量到的数据包含信号的全局信息)无法得到满足,例如最传统的摄影问题,每个感光元件所感知到的都只是一小块图像而不是什么全局信息,这是由照相机的物理性质决定的。为了解决这个问题,美国Rice大学的一部分科学家正在试图开发一种新的摄影装置(被称为「单像素照相机」),争取用尽量少的感光元件实现尽量高分辨率的摄影。有的时候,第二个条件(也就是说有数学方法保证能够从不完整的数据中还原出信号)无法得到满足。这种时候,实践就走在了理论前面。人们已经可以在算法上实现很多数据重建的过程,但是相应的理论分析却成为了留在数学家面前的课题。   但是无论如何,压缩感知所代表的基本思路:从尽量少的数据中提取尽量多的信息,毫无疑问是一种有着极大理论和应用前景的想法。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。复制的。。。。。
不明白啊 = =!

10,什么是 compressed sensing

压缩感知(Compressive Sensing,or Compressed Sampling,简称CS),是近几年流行起来的一个介于数学和信息科学的新方向,由Candes、Terres Tao等人提出,挑战传统的采样编码技术,即Nyquist采样定理.  压缩感知技术-理论  压缩感知理论为信号采集技术带来了革命性的突破,它采用非自适应线性投影来保持信号的原始结构,以远低于奈奎斯特频率对信号进行采样,通过数值最优化问题准确重构出原始信号.  压缩感知技术-概念特征  压缩感知从字面上看起来,好像是数据压缩的意思,而实则出于完全不同的考虑.经典的数据压缩技术,无论是音频压缩(例如 mp3),图像压缩(例如 jpeg),视频压缩(mpeg),还是一般的编码压缩(zip),都是从数据本身的特性出发,寻找并剔除数据中隐含的冗余度,从而达到压缩的目的.这样的压缩有两个特点:第一、它是发生在数据已经被完整采集到之后;第二、它本身需要复杂的算法来完成.相较而言,解码过程反而一般来说在计算上比较简单,以音频压缩为例,压制一个 mp3 文件的计算量远大于播放(即解压缩)一个 mp3 文件的计算量.稍加思量就会发现,这种压缩和解压缩的不对称性正好同人们的需求是相反的.在大多数情况下,采集并处理数据的设备,往往是廉价、省电、计算能力较低的便携设备,例如傻瓜相机、或者录音笔、或者遥控监视器等等.而负责处理(即解压缩)信息的过程却反而往往在大型计算机上进行,它有更高的计算能力,也常常没有便携和省电的要求.也就是说,人们是在用廉价节能的设备来处理复杂的计算任务,而用大型高效的设备处理相对简单的计算任务.这一矛盾在某些情况下甚至会更为尖锐,例如在野外作业或者军事作业的场合,采集数据的设备往往曝露在自然环境之中,随时可能失去能源供给或者甚至部分丧失性能,在这种情况下,传统的数据采集-压缩-传输-解压缩的模式就基本上失效了.  压缩感知的概念就是为了解决这样的矛盾而产生的.既然采集数据之后反正要压缩掉其中的冗余度,而这个压缩过程又相对来说比较困难,那么我们为什么不直接「采集」压缩后的数据?这样采集的任务要轻得多,而且还省去了压缩的麻烦.这就是所谓的「压缩感知」,也就是说,直接感知压缩了的信息.
压缩感知(compressive sensing, or compressed sampling,简称cs),是近几年流行起来的一个介于数学和信息科学的新方向,由candes、terres tao等人提出,挑战传统的采样编码技术,即nyquist采样定理。压缩感知技术-理论  压缩感知理论为信号采集技术带来了革命性的突破,它采用非自适应线性投影来保持信号的原始结构,以远低于奈奎斯特频率对信号进行采样,通过数值最优化问题准确重构出原始信号。压缩感知技术-概念特征  压缩感知从字面上看起来,好像是数据压缩的意思,而实则出于完全不同的考虑。经典的数据压缩技术,无论是音频压缩(例如 mp3),图像压缩(例如 jpeg),视频压缩(mpeg),还是一般的编码压缩(zip),都是从数据本身的特性出发,寻找并剔除数据中隐含的冗余度,从而达到压缩的目的。这样的压缩有两个特点:第一、它是发生在数据已经被完整采集到之后;第二、它本身需要复杂的算法来完成。相较而言,解码过程反而一般来说在计算上比较简单,以音频压缩为例,压制一个 mp3 文件的计算量远大于播放(即解压缩)一个 mp3 文件的计算量。    稍加思量就会发现,这种压缩和解压缩的不对称性正好同人们的需求是相反的。在大多数情况下,采集并处理数据的设备,往往是廉价、省电、计算能力较低的便携设备,例如傻瓜相机、或者录音笔、或者遥控监视器等等。而负责处理(即解压缩)信息的过程却反而往往在大型计算机上进行,它有更高的计算能力,也常常没有便携和省电的要求。也就是说,人们是在用廉价节能的设备来处理复杂的计算任务,而用大型高效的设备处理相对简单的计算任务。这一矛盾在某些情况下甚至会更为尖锐,例如在野外作业或者军事作业的场合,采集数据的设备往往曝露在自然环境之中,随时可能失去能源供给或者甚至部分丧失性能,在这种情况下,传统的数据采集-压缩-传输-解压缩的模式就基本上失效了。   压缩感知的概念就是为了解决这样的矛盾而产生的。既然采集数据之后反正要压缩掉其中的冗余度,而这个压缩过程又相对来说比较困难,那么我们为什么不直接「采集」压缩后的数据?这样采集的任务要轻得多,而且还省去了压缩的麻烦。这就是所谓的「压缩感知」,也就是说,直接感知压缩了的信息。压缩感知技术-应用影响  在大量的实际问题中,人们倾向于尽量少地采集数据,或者由于客观条件所限不得不采集不完整的数据。如果这些数据和人们所希望重建的信息之间有某种全局性的变换关系,并且人们预先知道那些信息满足某种稀疏性条件,就总可以试着用类似的方式从比较少的数据中还原出比较多的信号来。到今天为止,这样的研究已经拓展地非常广泛了。   但是同样需要说明的是,这样的做法在不同的应用领域里并不总能满足上面所描述的两个条件。有的时候,第一个条件(也就是说测量到的数据包含信号的全局信息)无法得到满足,例如最传统的摄影问题,每个感光元件所感知到的都只是一小块图像而不是什么全局信息,这是由照相机的物理性质决定的。为了解决这个问题,美国rice大学的一部分科学家正在试图开发一种新的摄影装置(被称为「单像素照相机」),争取用尽量少的感光元件实现尽量高分辨率的摄影。有的时候,第二个条件(也就是说有数学方法保证能够从不完整的数据中还原出信号)无法得到满足。这种时候,实践就走在了理论前面。人们已经可以在算法上实现很多数据重建的过程,但是相应的理论分析却成为了留在数学家面前的课题。   但是无论如何,压缩感知所代表的基本思路:从尽量少的数据中提取尽量多的信息,毫无疑问是一种有着极大理论和应用前景的想法。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。复制的。。。。。
文章TAG:压缩压缩感知如何理解压缩感知

最近更新

  • 可编程逻辑,可编程逻辑器件是什么东西可编程逻辑,可编程逻辑器件是什么东西

    可编程逻辑器件是什么东西2,可编程逻辑器件的具体概念是什么3,什么是可编程逻辑器件4,可编程逻辑器件的发展史5,单片机与可编程逻辑器件的区别6,可编程逻辑器件的具体概念是什么1,可编程逻辑.....

    知识 日期:2023-09-05

  • ios软件中的文稿与数据,iOS文稿数据清理ios软件中的文稿与数据,iOS文稿数据清理

    二、清理iPhone文稿和数据:2的方法。它会在软件中存储大量的文稿和数据/,如何删除iphone文稿和数据iPhone的文稿数据指的是应用及其缓存数据,需要删除一个应用的。1、苹果手机应用程序里.....

    知识 日期:2023-09-05

  • 升降压芯片,高性价比升压芯片有哪些升降压芯片,高性价比升压芯片有哪些

    高性价比升压芯片有哪些2,在做DCDC模块时升压和降压用什么芯片比较好3,有没有既可以升压又可以降压的DCDC芯片4,升压降压芯片5,求占用面积小的升压芯片和降压芯片6,DCDC升降压电路用什么芯.....

    知识 日期:2023-09-05

  • 北京科来数据分析,北京联科数据公司怎么样北京科来数据分析,北京联科数据公司怎么样

    科来便携式网络分析系统科来网络分析系统2010(便携式)科来网络分析系统2010是自行设计开发的第二代网络分析引擎,提供海量数据采集和高性能实时诊断分析。通过对协议包的解码和分析,可以.....

    知识 日期:2023-09-05

  • 达奇机器人声控达奇机器人声控

    关于机器人!!!长期派系领导人久瑞南慢慢掌握了实际权力,他们控制了达尔富尔地区。这个时候,谢顿觉得自己应该做点什么,于是让养子达奇(在达尔富尔地区度过了童年)去达尔富尔地区打听久瑞南身.....

    知识 日期:2023-09-05

  • 蚂蚁森林没有刷新数据,怎么查询蚂蚁森林能量数据蚂蚁森林没有刷新数据,怎么查询蚂蚁森林能量数据

    蚂蚁森林为什么有时候没有能量?蚂蚁森林没精力怎么回事蚂蚁森林没精力可能最近没用支付宝消费,或者支付宝没录体育数据开始支付宝录音活动数据具体操作方法如下:/12341.打开手机支付宝ap.....

    知识 日期:2023-09-05

  • 电动机的工作原理,电动机的工作原理电动机的工作原理,电动机的工作原理

    电动机的工作原理2,电动机原理3,电动机的工作原理4,电动机的原理是什么5,电动机的工作原理是什么6,电动机的结构和原理1,电动机的工作原理交流电动机是在定子上加上三相或单相交流电压,从而在.....

    知识 日期:2023-09-05

  • 大数据挖掘工具有哪些,常见的web数据挖掘工具有哪些大数据挖掘工具有哪些,常见的web数据挖掘工具有哪些

    数据挖掘,有哪些方法?大数据分析师进行的数据挖掘常用的模型有哪些?数据常见分析工具有什么?数据挖掘需要什么技能?什么bi数据Analysis工具结构、灵活性、维护成本、起步价、数据可视化效果.....

    知识 日期:2023-09-05