首页 > 厂商 > 问答 > 医学影像人工智能,人工智能医学影像能解决哪些问题

医学影像人工智能,人工智能医学影像能解决哪些问题

来源:整理 时间:2023-06-26 07:14:48 编辑:智能门户 手机版

1,人工智能医学影像能解决哪些问题

很多问题,有报道称其可以替代影像医生
随着医学影像智能化诊断的快速发展,为了满足愈加复杂的医学图像分析和处理要求,人工智能方法成为近年来医学图像处理技术发展的一个研究热点。本文对近五年来人工智能方法在医学图像处理领域应用的新进展进行综述。方法:将应用在医学图像处理领域主要的几种人工智能方法进行了分类总结,讨论了这些方法在医学图像处理各分支领域的应用,分析比较了不同方法间的优缺点。结果:人工智能方法应用主要在医学图像分割、图像配准、图像融合、图像压缩、图像重建等领域;包括蚁群算法、模糊集合、人工神经网络、粒子群算法、遗传算法、进化计算、人工免疫算法、粒计算和多agent技术等;涉及mr图像、超声图像、pet图像、ct图像和医学红外图像等多种医学图像。结论:由于医学影像图像对比度较低,不同组织的特征可变性较大,不同组织间边界模糊、血管和神经等微细结构分布复杂,尚无通用方法对任意医学图像都能取得绝对理想的处理效果。改进的人工智能方法与传统图像处理方法的结合,在功能上相互取长补短,将是医学图像处理技术重要的发展趋势。关键词:医学影像;医学图像处理;人工智能

人工智能医学影像能解决哪些问题

2,医学影像人工智能目前有盈利的吗

医疗领域的人工智能技术市场很大很大,而且,只要技术靠谱,不愁盈利
随着医学影像智能化诊断的快速发展,为了满足愈加复杂的医学图像分析和处理要求,人工智能方法成为近年来医学图像处理技术发展的一个研究热点。本文对近五年来人工智能方法在医学图像处理领域应用的新进展进行综述。方法:将应用在医学图像处理领域主要的几种人工智能方法进行了分类总结,讨论了这些方法在医学图像处理各分支领域的应用,分析比较了不同方法间的优缺点。结果:人工智能方法应用主要在医学图像分割、图像配准、图像融合、图像压缩、图像重建等领域;包括蚁群算法、模糊集合、人工神经网络、粒子群算法、遗传算法、进化计算、人工免疫算法、粒计算和多agent技术等;涉及mr图像、超声图像、pet图像、ct图像和医学红外图像等多种医学图像。结论:由于医学影像图像对比度较低,不同组织的特征可变性较大,不同组织间边界模糊、血管和神经等微细结构分布复杂,尚无通用方法对任意医学图像都能取得绝对理想的处理效果。改进的人工智能方法与传统图像处理方法的结合,在功能上相互取长补短,将是医学图像处理技术重要的发展趋势。关键词:医学影像;医学图像处理;人工智能

医学影像人工智能目前有盈利的吗

3,人工智能的医学生物研究和图像处理哪个方向好

肯定是图像处理好的多啊,医学生物研究听起来很牛的样子,但是就业面没得图像处理宽,图像信号处理这块算是很热门的专业了
随着医学影像智能化诊断的快速发展,为了满足愈加复杂的医学图像分析和处理要求,人工智能方法成为近年来医学图像处理技术发展的一个研究热点。本文对近五年来人工智能方法在医学图像处理领域应用的新进展进行综述。方法:将应用在医学图像处理领域主要的几种人工智能方法进行了分类总结,讨论了这些方法在医学图像处理各分支领域的应用,分析比较了不同方法间的优缺点。结果:人工智能方法应用主要在医学图像分割、图像配准、图像融合、图像压缩、图像重建等领域;包括蚁群算法、模糊集合、人工神经网络、粒子群算法、遗传算法、进化计算、人工免疫算法、粒计算和多agent技术等;涉及mr图像、超声图像、pet图像、ct图像和医学红外图像等多种医学图像。结论:由于医学影像图像对比度较低,不同组织的特征可变性较大,不同组织间边界模糊、血管和神经等微细结构分布复杂,尚无通用方法对任意医学图像都能取得绝对理想的处理效果。改进的人工智能方法与传统图像处理方法的结合,在功能上相互取长补短,将是医学图像处理技术重要的发展趋势。关键词:医学影像;医学图像处理;人工智能

人工智能的医学生物研究和图像处理哪个方向好

文章TAG:医学医学影像影像人工医学影像人工智能

最近更新

相关文章