首页 > 厂商 > 知识 > 热敏电阻工作原理,热电偶和热电阻工作原理的区别通熟简练一点的

热敏电阻工作原理,热电偶和热电阻工作原理的区别通熟简练一点的

来源:整理 时间:2023-08-29 09:51:17 编辑:智能门户 手机版

本文目录一览

1,热电偶和热电阻工作原理的区别通熟简练一点的

工作原理不同:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的,热电阻的工作原理是任何金属的电阻会随着温度的变化而变化。分半导体热敏电阻(负温度系数)和纯金属导体热电阻(铂,铜热电阻等正温度系数).而热电偶工作原理是基于赛贝克效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。热电偶的原理是2个不同的金属组成的闭合回路,金属接触点2端存在温度差异时,会形成电势。这就是塞贝克电势,主要由温差电势和接触电势组成。测量范围不同:热电阻是中低温区最常用的一种温度检测器,而热电偶测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
热电阻是通过温度变化引起电阻来测量 ,热电偶 是通过 温度变化引起电势差变化来测量

热电偶和热电阻工作原理的区别通熟简练一点的

2,热敏电阻在周围温度升高的情况下阻值如何变化

随着的温度变化,金属热电阻(thermal resistor)或半导体热敏电阻(semiconductor thermistor)的阻值将发生变化。这也是构成热电阻测温传感器的基本原理。 热敏电阻器是一种对温度反应较敏感、阻值会随着温度的变化而变化的非线性电阻器,它在电路中用文字符号“RT”或“R”表示。热敏电阻器按外形结构可分为圆片型(片状)热敏电阻器、圆柱形(柱状)热敏电阻器、圆圈形(垫圈状)热敏电阻器等多种;按温度变化特性可分为正温度系数热敏电阻器和负温度系数热敏电阻器两种类型。正温度系数热敏电阻器也称PTC热敏电阻器,广泛应用于彩色电视机的消磁电路中。其主要特性是电阻值与温度变化成正比例关系(即当温度升高时,电阻值也随之增大)。在常温下,PTC热敏电阻器的电阻值较小,仅有几欧姆至几十欧姆。当通过电流超过额定值时,其电阻值能在几秒种内迅速增大至数百欧姆至数千欧姆以上。负温度系数热敏电阻器也称NTC热敏电阻器,在音、视频电路及各种电器设备中作温度检测、温度补偿、温度控制或稳压控制用。其主要特性是电阻值随温度变化成反比例关系(即当温度升高时,电阻值随之减小)。
热敏电阻在周围温度升高的情况下,阻值变小。

热敏电阻在周围温度升高的情况下阻值如何变化

3,热敏电阻的作用

热电阻测温原理是:热电阻的电阻值是随温度变化而变化,半导体陶瓷热敏电阻是负温度系数,温度越高电阻值越低,铜热电阻和铂热电阻是正温度系数,温度越高电阻值越高,他们都有一个必备条件,就是具备非常优良的复现性和优良的线性。
应该是温度高时电阻就低,温度低时电阻就大。可以用在制冷上。当温度低时,通过高电阻切断电流(这个时候电流是很小的,几乎没有),当温度高时,电阻就几乎相当于一根导线,通过的电流是可以让电机正常运作的电流!
热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.NTC(Negative Temperature Coeff1Cient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.临界温度热敏电阻CTR(Crit1Cal Temperature Resistor)具有负电阻突变特性,在某一温度下,电阻值随温度的增加激剧减小,具有很大的负温度系数.
可以运用在制冷上的,热敏电阻是温度高时电阻大啊,
你的要求不能用热敏电阻来完成。热敏电阻就是电阻温度系数很大的电阻。

热敏电阻的作用

4,啥是光敏电阻啥是热敏电阻

光敏电阻光敏电阻(Optical Resistors)是一种对光敏感的元件,光敏电阻器是利用半导体光电导效应制成的一种特殊电阻器,对光线十分敏感。它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小。光敏电阻器在电路中用字母“R”或“RL”、“RG”表示什么是热敏电阻热敏电阻是敏感元件的一类,其电阻值会随着热敏电阻本体温度的变化呈现出阶跃性的变化,具有半导体特性.热敏电阻按照温度系数的不同分为: 正温度系数热敏电阻(简称PTC热敏电阻)负温度系数热敏电阻(简称NTC热敏电阻)正温度系数热敏电阻其电阻值随着PTC热敏电阻本体温度的升高呈现出阶跃性的增加, 温度越高,电阻值越大.负温度系数热敏电阻其电阻值随着NTC热敏电阻本体温度的升高呈现出阶跃性的减小, 温度越高,电阻值越小.
光敏电阻器又叫光感电阻,是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。通常,光敏电阻器都制成薄片结构,以便吸收更多的光能。当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。 热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为: σ=q(nμn+pμp) 因为n、p、μn、μp都是依赖温度t的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.

5,热敏电阻温度计的设计原理是什么

3、惠斯通电桥原理当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则pB=pD;I1=Ix,I2=I0;于是I1R1=I2R2,I1RX=I2R0由此得R1/RX=R2/R0或RX=R0R1/R2(1)式即为惠斯通电桥的平衡条件,也是用来测量电阻的原理公式欲求RX,调节电桥平衡后,只要知道R1,R2,R0的阻值,即可由(1)式求得其阻值2、热敏电阻温度计原理热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动但这样作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻下降这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低3、热敏电阻的电阻—温度特性曲线可以看出其阻值随温度升高而很快减小,用它来设计测温计或传感器是很灵敏的为了用它来制作测温计,首先要测定它的电阻—温度特性
热敏电阻温度计是一种可量度体温和室温的温度计,它有一个安培计/电流计和电源。当温度升高时,电热调节器(温度计的探测器)所探测到的电流会增加,电阻会减少。当电流增加,温度也表示会升高;当电阻增加,温度也表示会降低。[
热敏温度计热敏温度计采用微型半导体热敏电阻作为温度测量元件,对温度变化反应快,灵敏度高,体积小,结构简单。和演示电表配合组成热敏温度计可作为物理演示实验用。半导体热敏电阻的阻值具有很高的温度灵敏度,用一定的电路把热敏电阻阻值的变化转换成电流或电压的变化,由电表显出来以反映温度的变化。如图是J0301型热敏温度计的线路图。图中R1为半导体热敏电阻,R2和 R3分别是 R1在100℃和0℃时的等值电阻器,R4和R5为三极管3DG6的基极偏置电阻,R6和二极管(2AP型)D为温度补偿电路,R7配合R4为调整热敏元件线性用的半可变电阻器。
由热敏电阻的温度特性阐述了菲平衡电桥测温原理,提出了非线性函数的线性化处理设计方法,实验表明基于非平衡电桥的热敏电阻温度计符合设计要求,电路简单,

6,NTC温度传感器的工作原理是什么呢

NTC是负温度系数半导体温度传感器。其基本工作原理是利用某些半导体材料在温度变化时,内部的电子运动对于电流所产生的影响。这种影响的外在表现就是温度升高,传感器的电阻值下降。
NTC温度传感器是一种由锰、钴、镍为主多种金属氧化物为主要原材料经高温烧结而成的半导体陶瓷组件,它具有非常大的负温度系数,电阻值随环境温度或因通过电流产生自热而变化,即在一定的测量功率下,电阻值随着温度上升而迅速下降。利用这一特性,可将NTC热敏电阻通过测量其电阻值来确定相应的温度,从而达到检测和控制温度的目的
1、NTC负温度系数热敏电阻2、原理温度越高,阻值越小;温度越低,阻值越大
参考一下 便携式电子产品增长迅速,从手机和mp3播放器到pda、个人dvd播放器以及较为传统的笔记本电脑,人们开始重新审视消费和专业产品设计的诸多方面。这种变化在电池技术方面最为明显。用户希望电池能够满足日益复杂的应用需求,因此需要更大的电流、更长的工作时间。同时,对体积小、重量轻产品的需求也十分强劲,电池在任何设备的体积和重量中都占有相当大的比例,因此,制造商非常注意减少其体积和重量。还有一点,就是对快速充电的要求,即减少用户等待充电的时间,最大程度地发挥移动的优点。 这些要求促使电池制造商转向使用镍氢和锂离子等新化学材料,以获得更高的功率密度、更轻的重量和更快的充电速度。这些功能,尤其是快速充电,所付出的代价是增加了复杂性。新型电池需要精确控制的充电电路,不仅要确保其完全充满电,而且要尽量延长其使用寿命,并防止过热条件下可能出现的危险。 电池组件的任何部件发生故障都可能导致非常严重的后果,绝不仅仅是因无法供电而导致产品本身无法使用。最近,一家公司大举召回了一批笔记本电脑专用电池,估计造成的损失高达4亿美元。除了可能造成财务损失之外,电池还会导致人身伤害,甚至引发火灾。 为电池充电(尤其是高能锂离子电池)设计有效的控制策略,需要有良好的设计以及合适的元件规格和采购政策。可以采用以下几种架构:对于镍氢电池,充电控制回路可以监测(使用各种精确度级别)电池电压随时间变化的情况。还可以限定最长充电时间;或者让系统监测温度变化。在多数情况下,都需要某种温度监测方法来提供保护。 锂离子电池通常使用cccv(恒流-恒压)方案,但这仍需要监测温度以便允许启动快速充电,同时还需要一种机制确保在温度超过安全临界值时停止充电。因此,所有这些控制和保护策略都应包含温度监测机制,并将其作为整个功能体系的固有部分。通常置于充电器或电池内的ic可以提供监测和控制功能。但一定要在电池、充电器或者电池仓(低成本手机通常这样做)中安装一个或多个温度传感器。 对设计师来说,此类传感器的选择范围并不大。热电偶类器件需要相对复杂的补偿电路,这会导致一些校准问题。此外,它们会产生几mv的输出电压,需要进行信号调整,并且易受电磁噪声的 影响。 有时会用到镍或铂正温度系数 (ptc) 金属膜(或线绕)电阻器。它们的长期稳定性比热电偶类器件更好,并且不易受噪声干扰。但是,由于它们依赖流经自身的电流来监测温度,并且通常是低阻抗器件,所以耗电量相对较高,而且它们对温度变化的敏感程度不足以实现可靠的温度监测。市场上多数的线性ptc半导体器件都有这个缺点。 目前,在性价比合理的前提下,最有效的解决方案是使用ntc(负温度系数)热敏电阻。vishay提供的ntc类器件是一种简洁的解决方案,耗电量极少,在很大的温度范围内具有非常出色的精确性,而且对温度变化的反应很迅速。从工程师的角度来看,这些多种规格的器件为电气和结构设计提供了非常高的灵活性。 ntc器件最基本的设计和规格参数是电阻值(通常是25℃时的值)和公差。但是,必须记住的是,热敏电阻的工作原理与温度密切相关。因此,工程师要确保其设计的产品能够在工作温度达到极限时正常使用。在高温(低阻抗)环境下,电阻值必须足够高,这样才能减少接触电阻和互连电阻之类的系统错误。相反,在低温(高阻抗)环境下,如果通过热敏电阻的电流不够大,敏感度则会下降。 公差通常用℃表示,可以作为器件测量温度精确性的一个衡量标准。在少数情况下,制造商会给出以电阻值表示的公差,即在给定温度下器件电阻与其预期电阻值的接近程度。对于详细规格制定者和购买方来说,记住下面一点非常重要,即特定设计的公差要求可以限制在特定温度下,也可以限制在稍微宽泛的温度范围内。在第二种情况下,公差本身会随器件绝对电阻值的变化而变化。设计人员需要使用为器件指定的负温度系数计算整个温度范围内的电阻公差,从而确保所选的元件满足系统的测量精度要求。 在工作温度范围内,器件的性能依赖于其本身的材料和结构,并由第三类基本规格,即器件的r-t曲线来描述。在订购 ntc 类器件时,设计师经常仅指定电阻、公差和标准曲线。但是,在很多情况下其它参量才是确保系统按预期工作的关键。最重要的参量之一是b值,表示器件的电阻随温度变化的敏感度,同样重要的是该参量的标定公差。vishay的器件具有非常出色的b值和公差,能够带来更高的精确度和更好的总体系统可靠性,而且在器件的整个工作温度范围内都具有良好的性能。
文章TAG:热敏电阻工作原理热电偶和热电阻工作原理的区别通熟简练一点的

最近更新