首页 > 厂商 > 知识 > 时间序列分析法,在SPSS中时间序列分析怎么做

时间序列分析法,在SPSS中时间序列分析怎么做

来源:整理 时间:2025-02-13 05:23:59 编辑:智能门户 手机版

本文目录一览

1,在SPSS中时间序列分析怎么做

SPSS主要的操作选项在SPSS->Analyse分析->TimeSeries时间序列分析。先要对序列数据零均值化处理,检验数据是否符合正态分布,再检验数据的平稳性,如果平稳可以用ARMA模型,如果不平稳如果做检验,则需要进行差分来平稳化,用ARIMA模型。利用自相关和偏相关图确定模型的参数,再通过参数检验和信息准则选择最优的模型。

在SPSS中时间序列分析怎么做

2,什么是时间序列分析法

时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。该方法方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。

什么是时间序列分析法

3,什么叫做时间序列

时间序列法是一种定量预测方法,亦称简单外延方法。在统计学中作为一种常用的预测手段被广泛应用。时间序列通常有以下三种方法: 1.方法一是把一个时间序列的数值变动,分解为几个组成部分,通常分为: (1)倾向变动,亦称长期趋势变动T; (2)循环变动,亦称周期变动C; (3)季节变动,即每年有规则地反复进行变动S; (4)不规则变动,亦称随机变动I等。然后再把这四个组成部分综合在一起,得出预测结果。 2.方法二是把预测对象、预测目标和对预测的影响因素都看成为具有时序的,为时间的函数,而时间序列法就是研究预测对象自身变化过程及发展趋势。 3.方法三是根据预测对象与影响因素之间的因果关系及其影响程度来推算未来。与目标的相关因素很多,只能选择那些因果关系较强的为预测影响的因素。 时间序列分析在第二次世界大战前应用于经济预测。二次大战中和战后,在军事科学、空间科学、气象预报和工业自动化等部门的应用更加广泛。

什么叫做时间序列

4,SPSS的时间序列分析怎么做

原发布者:医学之眼时间序列分析及其SPSS操作教师:韩艳敏电话:13676798448(668448)一、时间序列分析概述时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。分析时间序列的方法构成数据分析的一个重要领域,即时间序列分析.时间序列根据所研究的依据不同,可有不同的分类1.按研究对象多少分:一元时间序列和多元时间序列;2.按时间连续性分:离散时间序列和连续时间序列;3.按序列的统计特性分:平稳时间序列和非平稳时间序列;4.按时间序列分布规律分:高斯型和非高斯型时间序列.时间序列国内生产总值等时间序列年份国内生产总值年末总人口人口自然增长率居民消费水平(亿元)(万人)(‰)(元)19901991199219931994201920192019201918547.921617.826638.134634.446759.458478.167884.674772.479552.811433311582311717111851711985012112112238912362612481014.3912.9811.6011.4511.2110.5510.4210.069.538038961070133117812311272629443094主要内容:?平稳时间序列分析时—间序Bo列x分-J析en发k展in的s两(1个97阶6段)?非平稳时间序列分析—Engle-Granger(1987)?时间序列模型不同于经济计量模型的两个特点是:-这种建模方法不以经济理论为依据,而是依据变量自身的变化规律,利用外推机制描述时间序列的变化。-明确考虑时间序列的平稳性。如果时间序列非平稳,建立模型之前应先通过差分或者

5,时间序列分析的具体算法

用随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。由于在多数问题中,随机数据是依时间先后排成序列的,故称为时间序列。它包括一般统计分析(如自相关分析、谱分析等),统计模型的建立与推断,以及关于随机序列的最优预测、控制和滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则着重研究数据序列的相互依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,用x(t)表示某地区第t个月的降雨量,就数学方法而言,平稳随机序列(见平稳过程)的统计分析,在理论上的发展比较成熟,从而构成时间序列分析的基础。频域分析  一个时间序列可看成各种周期扰动的叠加,频域分析就是确定各周期的振动能量的分配,这种分配称为“谱”,或“功率谱”。因此频域分析又称谱分析。谱分析中的一个重要是统计量,称为序列的周期图。当序列含有确定性的周期分量时,通过I(ω)的极大值点寻找这些分量的周期,是谱分析的重要内容之一。在按月记录的降雨量序列中,序列x(t)就可视为含有以12为周期的确定分量,所以序列x(t)可以表示为 ,它的周期图I(ω)处有明显的极大值。当平稳序列的谱分布函数F(λ)具有谱密度?(λ)(即功率谱)时,可用(2π)-1I(λ)去估计?(λ),它是?(λ)的渐近无偏估计。如欲求?(λ)的相合估计(见点估计),可用I(ω)的适当的平滑值去估计?(λ),常用的方法为谱窗估计即取?(λ)的估计弮(λ)为 ,式中wt(ω)称为谱窗函数。谱窗估计是实际应用中的重要方法之一。谱分布F(λ)本身的一种相合估计可由I(ω)的积分直接获得,即 。 研究以上各种估计量的统计性质,改进估计方法,是谱分析的重要内容。时域分析  它的目的在于确定序列在不同时刻取值的相互依赖关系,或者说,确定序列的相关结构。这种结构是用序列的自相关函0,1,…)来描述的,为序列的自协方差函数值,m=Ex(t)是平稳序列的均值。常常采用下列诸式给出m,γ(k),ρ(k)的估计: ,通(k)了解序列的相关结构,称为自相关分析。研究它们的强、弱相合性及其渐近分布等问题,是相关分析中的基本问题。模型分析  20世纪70年代以来,应用最广泛的时间序列模型是平稳自回归-滑动平均模型 (简称ARMA模型)。其形状为: 式中ε(t)是均值为零、方差为σ2的独立同分布的随机序列;和σ2为模型的参数,它们满足:   对一切|z|≤1的复数z成立。p和q是模型的阶数,为非负整数。特别当q=0时,上述模型称为自回归模型;当p=0时, 称为滑动平均模型。根据x(t)的样本值估计这些参数和阶数,就是对这种模型的统计分析的内容。对于满足ARMA模型的平稳序列,其线性最优预测与控制等问题都有较简捷的解决方法,尤其是自回归模型,使用更为方便。G.U.尤尔在1925~1930年间就提出了平稳自回归的概念。1943年,Η.Β.曼和Α.瓦尔德发表了关于这种模型的统计方法及其渐近性质的一些理论结果。一般ARMA模型的统计分析研究,则是20世纪60年代后才发展起来的。特别是关于p,q值的估计及其渐近理论,出现得更晚些。除ARMA模型之外,还有其他的模型分析的研究,其中以线性模型的研究较为成熟,而且都与ARMA模型分析有密切关系。回归分析  如果时间序列x(t)可表示为确定性分量φ(t)与随机性分量ω(t)之和,根据样本值x(1),x(2),…,x(T)来估计φ(t)及分析ω(t)的统计规律,属于时间序列分析中的回归分析问题。它与经典回归分析不同的地方是,ω(t)一般不是独立同分布的,因而在此必须涉及较多的随机过程知识。当φ(t)为有限个已知函数的未知线性组合时,即 ,式中ω(t)是均值为零的平稳序列,α1,α2,…,αs是未知参数,φ1(t),φ2(t),…,φs(t)是已知的函数,上式称为线性回归模型,它的统计分析已被研究得比较深入。前面叙述的降雨量一例,便可用此类模型描述。回归分析的内容包括:当ω(t)的统计规律已知时,对参数α1,α2,…,αs进行估计,预测x(T+l)之值;当ω(t)的统计规律未知时,既要估计上述参数,又要对ω(t)进行统计分析,如谱分析、模型分析等。在这些内容中,一个重要的课题是:在相当广泛的情况下,证明 α1,α2,…,αs的最小二乘估计,与其线性最小方差无偏估计一样,具有相合性和渐近正态分布性质。最小二乘估计姙j(1≤j≤s)不涉及ω(t)的统计相关结构,是由数据x(1),x(2),…,x(T)直接算出,由此还可得(t)进行时间序列分析中的各种统计分析,以代替对ω(t)的分析。在理论上也已证明,在适当的条件下,这样的替代具有满意的渐近性质。由于ω(t)的真值不能直接量测,这些理论结果显然有重要的实际意义。这方面的研究仍在不断发展。时间序列分析中的最优预测、控制与滤波等方面的内容见平稳过程条。近年来多维时间序列分析的研究有所进展,并应用到工业生产自动化及经济分析中。此外非线性模型统计分析及非参数统计分析等方面也逐渐引起人们的注意。

6,什么是时间序列预测法

一种历史资料延伸预测,也称历史引伸预测法。是以时间数列 所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。 时间序列,也叫时间数列、历史复数或动态数列 。它是将某种统计指标的 数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。 时间序列预测法的步骤 第一步 收集历史资料,加以整理,编成时间序列,并根据时间序列绘成统计图 。时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3)循环变动;(4)不规则变动。 第二步 分析时间序列。时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。 第三步 求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。对于数学模式中的诸未知参数,使用合适的技术方法求出其值。 第四步 利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的长期趋势 值T和季节变动值s,在可能的情况下预测不规则变动值I。然后用以下模式计算出未来的时间序列的预测值Y: 加法模式T+S+I=Y 乘法模式T×S×I=Y 如果不规则变动的预测值难以求得,就只求长期趋势 和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。但要注意这个预测值只反映现象未来的发展趋势,即使很准确的趋势线 在按时间顺序的观察方面所起的作用,本质上也只是一个平均数 的作用,实际值将围绕着它上下波动。 时间序列分析基本特征[1] 1.时间序列分析法是根据过去的变化趋势预测未来的发展,它的前提是假定事物的过去延续到未来。 时间序列分析,正是根据客观事物发展的连续规律性,运用过去的历史数据,通过统计分析,进一步推测未来的发展趋势。事物的过去会延续到未来这个假设前提包含两层含义:一是不会发生突然的跳跃变化,是以相对小的步伐前进;二是过去和当前的现象可能表明现在和将来活动的发展变化趋向。这就决定了在一般情况下,时间序列分析法对于短、近期预测比较显著,但如延伸到更远的将来,就会出现很大的局限性,导致预测值偏离实际较大而使决策失误。 2.时间序列数据变动存在着规律性与不规律性 时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型。 (1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不相等。 (2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。 (3)随机性:个别为随机变动,整体呈统计规律。 (4)综合性:实际变化情况是几种变动的叠加或组合。预测时设法过滤除去不规则变动,突出反映趋势性和周期性变动。 时间序列预测法的分类 时间序列预测法可用于短期预测、中期预测 和长期预测 。根据对资料分析方法的不同,又可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法 等。 简单序时平均数法 也称算术平均法 。即把若干历史时期的统计数值作为观察值,求出算术平均数作为下期预测值。这种方法基于下列假设:“过去这样,今后也将这样”,把近期和远期数据等同化和平均化,因此只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。 加权序时平均数法 就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。 简单移动平均法 就是相继移动计算若干时期的算术平均数作为下期预测值。 加权移动平均法 即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。 上述几种方法虽然简便,能迅速求出预测值,但由于没有考虑整个社会经济发展的新动向和其他因素的影响,所以准确性较差。应根据新的情况,对预测结果作必要的修正。 指数平滑法 即根据历史资料的上期实际数和预测值,用指数加权的办法进行预测。此法实质是由内加权移动平均法演变而来的一种方法,优点是只要有上期实际数和上期预测值,就可计算下期的预测值,这样可以节省很多数据和处理数据的时间,减少数据的存储量,方法简便。是国外广泛使用的一种短期预测 方法。 季节趋势预测法 根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。推算季节性指数可采用不同的方法,常用的方法有季(月)别平均法和移动平均法两种:a.季(月)别平均法。就是把各年度的数值分季(或月)加以平均,除以各年季(或月)的总平均数,得出各季(月)指数。这种方法可以用来分析生产、销售 、原材料储备、预计资金周转 需要量等方面的经济事物的季节性变动;b.移动平均法。即应用移动平均数计算比例求典型季节指数。 市场寿命周期预测法 就是对产品市场寿命周期的分析研究。例如对处于成长期的产品预测其销售量,最常用的一种方法就是根据统计资料,按时间序列画成曲线图 ,再将曲线外延,即得到未来销售发展趋势。最简单的外延方法是直线外延法,适用于对耐用消费品 的预测。
文章TAG:时间时间序列时间序列分析序列时间序列分析法

最近更新

  • bat54s,bav99和BAT54S的区别bat54s,bav99和BAT54S的区别

    bav99和BAT54S的区别2,Bat54s二极管可用什么代替3,问一下BAT54s在protel99es的哪个库里4,在这个电路中Bat54s肖特基二极管是做什么用的5,BAT54S是什么二极管在电路中起什么作用比如说这个.....

    知识 日期:2025-02-13

  • 紫色人紫色人

    喜欢粉色的男人和紫色人不要太相信这些。紫色,高贵神秘的颜色,略带忧郁的颜色,难忘的颜色,紫色是红色和蓝色的混合,从艺术家的角度来说,紫色是最难搭配的颜色,有数不清的色调可供选择。天气越.....

    知识 日期:2025-02-13

  • 店面升级,淘宝店铺升级一般要多长时间店面升级,淘宝店铺升级一般要多长时间

    淘宝店铺升级一般要多长时间2,门店升级主要讲那几方面的3,个人店铺如何升级企业店铺4,已经开的店铺怎样升级成企业店铺5,我有店铺是最基础的现在想升级一下怎么弄呢6,淘宝个人店铺怎么升级.....

    知识 日期:2025-02-13

  • 华为p8数据线连接汽车华为p8数据线连接汽车

    华为手机数据Line连接车载导航1。使用手机和车连接时,只能充电,华为手机和大众怎么样连接可以用mirrorlink连接汽车,如何让手机使用数据wired汽车播放歌曲?首先必须打开手机和汽车蓝牙连接.....

    知识 日期:2025-02-12

  • 山西自动化设备附件厂家,山西大钧自动化设备有限公司山西自动化设备附件厂家,山西大钧自动化设备有限公司

    山西富恒达自动化设备有限公司怎么样?山西沃尔特·叶巍自动化Control设备有限公司怎么样?山西沃尔特·叶巍自动化Control设备公司经营范围为:办公自动化设备、电线电缆、钢材、金属材料.....

    知识 日期:2025-02-12

  • 安徽省自考电气及其自动化,自考电气工程及其自动化难不难?安徽省自考电气及其自动化,自考电气工程及其自动化难不难?

    电气工程及其自动化自学需要哪些书籍?自学电气工程及其自动化比较难。没有入学考试,但是难度系数还是一定的,电气自动化2008年自考本科有哪些课程?自考电气及自动化电气类课程自然比较难,比.....

    知识 日期:2025-02-12

  • 导热硅胶垫,HP GPU 硅胶导热垫导热硅胶垫,HP GPU 硅胶导热垫

    HPGPU硅胶导热垫2,什么是导热矽胶布有什么作用3,导热硅胶垫性能怎么样通常用在什么东西上的4,CPU导热硅胶垫怎么用5,我的笔记本上用的是导热硅胶垫请问需要更换吗6,导热硅胶垫片有什么性能.....

    知识 日期:2025-02-12

  • 自动化设备去哪买便宜点,自动化零部件去哪里采购?自动化设备去哪买便宜点,自动化零部件去哪里采购?

    在哪里购买自动化零件?通过多年的努力,汇金达自动化已涉足机械加工自动化生产线、织网机、电机、塑料机械、液压设备、自动装配设备、自动焊接设备等领域。楼主问的问题其实很笼统,比如自.....

    知识 日期:2025-02-12