首页 > 资讯 > 经验 > 深度神经网络模型,神经网络模型是什么常用在什么地方这个难吗

深度神经网络模型,神经网络模型是什么常用在什么地方这个难吗

来源:整理 时间:2023-08-27 20:27:19 编辑:智能门户 手机版

本文目录一览

1,神经网络模型是什么常用在什么地方这个难吗

是种算法吧。常用在模式识别的问题中,不是很难,去中文论文网站搜搜一篇论文看看即可

神经网络模型是什么常用在什么地方这个难吗

2,深度学习 是生成模型还是判别模型

深度学习的模型有很多,既有生成模式也有判别模式, 目前开发者最常用的深度学习模型与架构包括 CNN卷积神经网络、DBN深度信念网络、RNN循环神经网络、RNTN递归神经张量网络、自动编码器、GAN 生成对抗模型等。机器学习方法可以分为生成方法(generative approach)和判别方法(discriminative approach),所学到的模型分别称为生成式模型(generative model)和判别式模型(discriminative model)。生成方法通过观测数据学习样本与标签的联合概率分布P(X, Y),训练好的模型能够生成符合样本分布的新数据,它可以用于有监督学习和无监督学习。判别模型:将跟踪问题看成一个二分类问题,然后找到目标和背景的决策边界。它不管目标是怎么描述的,那只要知道目标和背景的差别在哪,然后你给一个图像,它看它处于边界的那一边,就归为哪一类。
期待看到有用的回答!

深度学习 是生成模型还是判别模型

3,在深度学习中DNN与DBN两个网络有什么区别

dnn 从名字上你就可以看出来,是深度神经网络,类比于浅层神经网络,它的训练方法也是BP,没有引入无监督的预训练。隐层的激活函数使用了 ReLU,改善了“梯度弥散”,通过正则化+dropout 改善了过拟合的现象,在输出层 是softmax 作为激活函数。目标函数是交叉熵。他是一个 有监督的判别模型。stacked denoised autoencoder (SDA)深度学习结构,和DBN类似 使用 无监督的网络“堆叠”起来的,他有分层预训练来寻找更好的参数,最后使用BP来微调网络。比dnn利用各种算法来初始化权值矩阵,从经验上来看是有帮助的。但是缺点也很明显,每层的贪婪学习权值矩阵,也带来了过长的训练时间。在大量的数据面前 dnn(relu)的效果已经不差于预训练的深度学习结构了。最终DBN也是看成是“生成模型”。CNN 也没有pre-train过程,训练算法也是用BP。 因为加入卷积 可以更好的处理2D数据,例如图像和语音。并且目前看来 相比其它网络有更好的表现。dnn/dbn/sda 等都是处理1D的数据。

在深度学习中DNN与DBN两个网络有什么区别

4,AlphaGo 用了哪些深度学习的模型

AlphaGo用了一个深度学习的模型:卷积神经网络模型。阿尔法围棋(AlphaGo)是一款围棋人工智能程序。其主要工作原理是“深度学习”。“深度学习”是指多层的人工神经网络和训练它的方法。一层神经网络会把大量矩阵数字作为输入,通过非线性激活方法取权重,再产生另一个数据集合作为输出。这就像生物神经大脑的工作机理一样,通过合适的矩阵数量,多层组织链接一起,形成神经网络“大脑”进行精准复杂的处理,就像人们识别物体标注图片一样。扩展资料:阿尔法围棋用到了很多新技术,如神经网络、深度学习、蒙特卡洛树搜索法等,使其实力有了实质性飞跃。美国脸书公司“黑暗森林”围棋软件的开发者田渊栋在网上发表分析文章说,阿尔法围棋系统主要由几个部分组成:一、策略网络(Policy Network),给定当前局面,预测并采样下一步的走棋;二、快速走子(Fast rollout),目标和策略网络一样,但在适当牺牲走棋质量的条件下,速度要比策略网络快1000倍;三、价值网络(Value Network),给定当前局面,估计是白胜概率大还是黑胜概率大;四、蒙特卡洛树搜索(Monte Carlo Tree Search),把以上这三个部分连起来,形成一个完整的系统。参考资料来源:搜狗百科-阿尔法围棋(围棋机器人)搜狗百科-深度学习
AlphaGo依靠精确的专家评估系统(value network)、基于海量数据的深度神经网络(policy network),及传统的人工智能方法蒙特卡洛树搜索的组合,以及可以通过左右互搏提高自己的水平,这个真的是有的恐怖了有木有。李世石九段固然厉害,可人类毕竟是动物,机器软件程序是无休止的工作,这一点也是客观因素了。比赛已经结束了,李世石一比四不敌alphago。

5,神经网络模型的介绍

神经网络(Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学习系统。神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。神经网络的基础在于神经元。神经元是以生物神经系统的神经细胞为基础的生物模型。在人们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元数学化,从而产生了神经元数学模型。大量的形式相同的神经元连结在—起就组成了神经网络。神经网络是一个高度非线性动力学系统。虽然,每个神经元的结构和功能都不复杂,但是神经网络的动态行为则是十分复杂的;因此,用神经网络可以表达实际物理世界的各种现象。神经网络模型是以神经元的数学模型为基础来描述的。人工神经网络(ArtificialNuearlNewtokr)s,是对人类大脑系统的一阶特性的一种描。简单地讲,它是一个数学模型。神经网络模型由网络拓扑.节点特点和学习规则来表示。神经网络对人们的巨大吸引力主要在下列几点:1.并行分布处理。2.高度鲁棒性和容错能力。3.分布存储及学习能力。4.能充分逼近复杂的非线性关系。在控制领域的研究课题中,不确定性系统的控制问题长期以来都是控制理论研究的中心主题之一,但是这个问题一直没有得到有效的解决。利用神经网络的学习能力,使它在对不确定性系统的控制过程中自动学习系统的特性,从而自动适应系统随时间的特性变异,以求达到对系统的最优控制;显然这是一种十分振奋人心的意向和方法。人工神经网络的模型现在有数十种之多,应用较多的典型的神经网络模型包括BP神经网络、Hopfield网络、ART网络和Kohonen网络。 学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法。而有的算法可能可用于多种模型。在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如Bp网络,Hopfield网络,ART络和Kohonen网络中;Bp网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Khonone网络则无需教师信号就可以学习49[]。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。

6,如何从零使用 Keras TensorFlow 开发一个复杂深度学习模型 问

这篇文章介绍的是关于并行深度神经网络的设计。在今年发布的两个机器学习项目中,cxxnet是最精彩的一个。因为它包含了我们团队可以发挥到的机器学习和系统的各个方面的极致:除了前沿的深度学习之外,它的两个独到特点也是让我们在设计实现中最为享受的1)灵活的公式支持和极致的C++模板编程;深度神经网络的实现大致分两类:以python为主的编程效率派和以c++为核心的为代表的追逐性能派。前者支持直接tensor的计算,而后者往往需要给每个神经网络的层和更新公式编写独立的cudakernel。编程效率派认为机器学习程序员应该是写公式来达到代码最大的可读性和易改写性。而很多以C++为核心的代码之所以没有支持非常灵活的张量计算,是因为因为运算符重载和临时空间的分配会带来效率的降低。cxxnet的核心mshadow在这两者之间做了一个平衡。使得我们在不损失效率的前提下可以通过模板编程技术允许开发者编写和matlab/numpy类似的代码,并且在编译时自动成优化的kernel。其背后的expressiontemplate技术是我最喜欢的c++trick之一。非常值得最求效率抽象和优美的同学了解。因为采用了mshadow作为核心,直接导致cxxnet的各种实现可以非常简单可读,编写一份代码就可以在GPU和CPU上面跑。使得其在代码简洁和可扩展上更加容易。2)通用的并行参数共享和更新方案多卡和多机计算一直是大规模机器学习中一个让人兴奋的话题。提到神经网络并行,最让我头疼的是可以选择的方案很多,而都涉及到不同的hack。单机多卡到底是用P2P,还是拷贝到内存,是用stream开始开多线程。分布式到底是用parameterserver,MPI还是自己写一个框架。可以选择的方法很多。设计出一个分布式的代码不难,困难的是如何让并行的接口自然的独立出来,使得其不会影响其它部分的实现。经过不断地考虑,最终我决定采用了mshadow-ps这样一个统一的参数共享接口。简单的说,mshadow-ps是一个GPU的异步parameterserver接口(应该也是目前为止唯一一个,因为GPU线程模型和CPU不同,原有的的ps库并不能直接用于GPU)。异步通信对于神经网络的更新非常重要。在backprop算法中,我们很早就可以获得梯度并且进行梯度同步,而只有到下一次forward到对应层的时候才会需要这个weight。我和limu合作设计了ps风格的三个接口来解决这样的同步问题,Push/PullReq和Pullwait。当获backprop得梯度的时候直接调用push把梯度发送出去,并且调用pullreq请求结果。Push和Pullreq都是异步操作,背后会有单独的线程同时完成数据拷贝同步,以及拷回的操作。而当我们需要weight之前在调用Pullwait来等待可能没有完成的操作。这样简单的三个接口,使得我们可以经过很少的改动就可以设计出多卡和分布式的神经网络来,并且在调用这些接口的时候完全不需要关系同步的实现是什么。值得一提的是,这样的编程模式把多GPU,分布式以及各个通信框架直接结合起来。mshadow-ps支持单机多卡的GPUPS,以及基于parameter-server的分布式PS实现。同样的也可以很容易MPI来支持多机通信。使得一个统一的接口,可以完成从单机多卡到分布式各种后端实现的支持。并且因为高效的异步通信,使得我们可以在alexnet上面达到linearspeedup(注:并行的难度在于计算和通信的时间比,weight少更加复杂的网络反而更加容易线性加速,而alexnet是非常困难的例子)。经过团队里面大家不断地努力,cxxnet的V2终于可以和大家见面了。除了上述介绍的技术亮点之外,还有各种好玩的特性。现在把特点总结如下:1.轻量而齐全的框架:我们尽力维持最小的依赖库实现最多的功能。推荐环境下仅需要CUDA,OpenCV,MKL或BLAS即可编译。2.强大的统一的并行计算接口:基于mshadow-ps的并行计算接口采用了一份代码解决了多GPU,多机的异步同步。同步和计算重叠,在多份测试中均可以得到线性加速比。3.易于扩展的代码结构:cxxnet计算核心由mshadow提供。Mshadow使用户可以编写numpy/matlab风格的代码,但仍具备手动优化cuda代码的灵活性。CPU和GPU共享同一份代码,在编译期间通过模板自动翻译成CUDA/MKL调用。另外一些特性包括:4.CuDNN支持:Nvidia原生卷积支持,可加速计算30%!5.及时更新的最新技术:我们将及时跟进学术界的动态,例如现在已经支持MSRA的ParametricRelu和Google的BatchNormalization6.Caffe模型转换:支持将训练好的Caffe模型直接转化为cxxnet模型(本周内上线!)7.方便的语言接口:在Python中直接进行训练,方便可视化。Matlab也将很快提供我们相信可以通过最简洁清晰的代码来完成高效的C++深度神经网络实现。我们也欢迎对于系统和机器学习有兴趣的同学加入到项目中来
文章TAG:深度神经网络模型神经网络模型是什么常用在什么地方这个难吗

最近更新

  • dct和cvt哪个变速箱好,cvt和dct哪个好dct和cvt哪个变速箱好,cvt和dct哪个好

    cvt和dct哪个好2,CVT和DCT哪个更受欢迎3,cvtat和dct哪个更适合家用4,变速箱哪种类型的好1,cvt和dct哪个好DCT是有级变速,是双离合器变速器,目的是减少换挡冲击。他和CVT不是一个思维下的产物.....

    经验 日期:2023-08-27

  • 电子点火器,灶具上的电子点火器放久了电子会失效吗电子点火器,灶具上的电子点火器放久了电子会失效吗

    灶具上的电子点火器放久了电子会失效吗2,电子点火控制器有什么作用3,汽车电子打火与普通的有什么不同4,无触点式电子点火系统的工作原理5,电子点烟器打火机怎么用6,打火机里的电子打火器为.....

    经验 日期:2023-08-27

  • 无锡北辰,西门子300plc怎么用以太网连接无锡北辰,西门子300plc怎么用以太网连接

    西门子300plc怎么用以太网连接2,s7200能否做主站3,多台S300的PLC的profibus通信怎么设置地址应该怎么分配4,如何设置S7200的通讯通讯方式选择5,s7200如何设置通讯口6,MOXA有没有与西门子CP2.....

    经验 日期:2023-08-27

  • 2fsk,2FSK数字信号频带传输系统的设计与建模2fsk,2FSK数字信号频带传输系统的设计与建模

    2FSK数字信号频带传输系统的设计与建模2,2FSK调制有什么用途3,有谁能解释一下2FSK的非相干解调4,什么是严格正交为什么2fsk信号可能不是严格正交的5,调制方式的FSK6,二进制移频监控2FSK的性.....

    经验 日期:2023-08-27

  • 上位机软件,用VC编写电机控制上位机软件上位机软件,用VC编写电机控制上位机软件

    用VC编写电机控制上位机软件2,上寨机去哪下软件app的3,opc在上位机和plc通讯是起什么作用上位机和plc通讯一定要用opc4,我想学习上位机但不知道该如何开始需要学习什么软件需要先了5,PLC上.....

    经验 日期:2023-08-27

  • a12,A12是哪个国家的铸铝牌号呢a12,A12是哪个国家的铸铝牌号呢

    A12是哪个国家的铸铝牌号呢2,台电平板电脑台电A12怎么样3,a12是真分数且能够化成有限小数a可以是4,RV630中A12与A15版究竟有什么1,A12是哪个国家的铸铝牌号呢是不是表述有问题呀,是不是2A12,.....

    经验 日期:2023-08-27

  • 双超,双超屏什么意思双超,双超屏什么意思

    双超屏什么意思2,什么是双超显示器3,信用卡双超是什么意思4,滁州市提出的双超内容是什么5,什么是双超显示器6,甚么是双超显示器1,双超屏什么意思楼上的不对哦双超屏是超薄,超窄边框显示屏的意.....

    经验 日期:2023-08-27

  • pc电脑是什么,什么是PC电脑pc电脑是什么,什么是PC电脑

    什么是PC电脑2,pc是什么3,pc是什么意思4,PC是什么东西5,PC是什么6,通常说的PC机是指什么1,什么是PC电脑系统和应用2,pc是什么PC简称电脑的意思3,pc是什么意思个人电脑,就是台式电脑4,PC是什么东.....

    经验 日期:2023-08-27